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§1 INTRODUCTION

The Mathieu groups are My, Mo, Moo, Mss, Msy, which are one family of the 26 spo-
radic finite simple groups. They were discovered by the French mathematician Emile
Mathieu, see table [.1. Furthermore, the first expression of simplicity and uniqueness
of Mathieu groups was in 1930s in a paper by Witt, and a Steiner system was described
in that paper. Now, we are normally using the system to describe these groups. The
largest Mathieu group is M, which is 5-transitive of 24-point, and it could be defined
as a group of preserved permutations of Steiner system S(5,8,24). Notice that, some
of Ms,’s simple subgroups are M3, Moo, Mo and M. This project is started by
introducing some basic facts, moving to the definition of Steiner system and some of
its properties, following by discussing the Steiner system S(5,8,24), then presenting
the Miracle Octad Generator (MIOG). In the end, we introduc the concept of Moy.
The main two sources for this project are (An introduction to Steiner systems by M.
Grannell and T. Griggs, [GrGr]) and (A new combinatorial approach to My by R.
Curtis, [Cur]).

Group Order Discovered by | Date
My, 24.32.5.11 Mathieu 1873
M, 20.3%.5.11 Mathieu 1873
Moo 27.32.5.7-11 Mathieu 1873

Mos 27.32.5.7-11-23 Mathieu 1873
My, | 219.3%.5.7-11-23 Mathieu 1873

Table 1.1: The Mathieu groups



§11 PRELIMINARIES

II.1 Background

Definition I1.1.1. GF(2) is a finite field with 2 elements {0, 1}.
Definition II.1.2. A set that contains four elements is called a tetrad.

Definition I1.1.3. Let V is a non-empty set and K is a field. Then V is called a vector space
over K if V is an abelian group under addition and it is closed under a scalar multiplication,

let \,8€ F,v,v1,v9 € V, then

1. (A+B)v=Av+ P,

2. Moy +v2) = Avp + Ao,
3. (A\B)v = A(Bv), and

4. 1lv = .

Definition II.1.4. Let G be a group and N > G,then N is a normal subgroup if and only if
for all g € G we have N9 = N.

Definition II.1.5. A non-trivial group G is called a simple group if it has no proper non-

trivial normal subgroups.

Definition I1.1.6. An action of a group G on a non-empty set ) is a binary operation
% : Q) x G — Q, such that for all o € Q, a*1 =« and (a*g) * h = a = (gh) for all g,h € G.

The degree of action G on w is the cardinality of €.



3 II.1. Background

Definition I1.1.7. Let G act on a set Q and « € Q. Then aG = {ag | g € G} < Q is called
the orbit of o under G.

Definition I1.1.8. Let G be a group acting on a non-empty set €.

1. if a € Q then G, = {g € G | ag = «} is called the stabiliser of «.

2. If G has only one orbit, i.e. aG = () for a € ) then we say that G acts transitively on
Q.

3. A group G acts k-transitively precisely if for any two sequences of k distinct points
from Q, say (a1, a9,...,a4) and (B1, B2, ..., Bk) there is a group element g € G such

that ;g = B; foreach i =1,... k.

4. If G be k-transitive, and distinct elements aq, ao,...,ar € Q, g1, g2 € G satisfy a;g1 =

a;go foralli = 1,...,k and g1 = go, then we say that G acts sharply k-transitive on €.
Definition I1.1.9. Let X, Y be sets, then symmetric difference defines as X +Y = Z, where
Z={x|@@eXrz¢Y)v(@¢XazeY)} or Z=(X\Y)|JI\X).
Definition I1.1.10. Let G and H be groups ¢ : G — H is a group homomorphism if

(g192)0 = (g91)9(ga)¢ for all g1, g2 € G.



QIII THE MATHIEU GROUP My,

III.1 Steiner system

Definition III.1.1. A Steiner system S(t,k,v) is a set of k-element subsets of a base set
which is a set of v elements and any t-element subset of the base set appears in precisely one

of the k-element subsets which are called blocks.

Theorem III.1.2. If there exists an S(t, k,v) then there exists an S(t — 1,k —1,v —1).

Proof. Suppose S(t, k,v) exists, € is a base set and « is a fixed element in . Then
remove all the blocks which do not contain «, so the remaining blocks contain o and
t — 1 elements which appear precisely once in a block. By removing a from 2 and the
blocks we obtain that [Q\{a}| = v — 1, and the size of blocks is k — 1. Hence, this is
an S(t—1,k—1,0—1). O
Theorem II1.1.3. If there exists an S(t,k,v). Then (];) divides (1;), and the number of
blocks is (:)/(’Z)

Proof. Suppose S(t, k,v) exists, 2| = v and X < Q with |X| = k, then the number of

all subsets of size t of X is (l:) By assuming there are n sets of size k, and since any

t-element lies in only one k-element, this implies that

(1) - ()

and n is an integer, hence (?)/(’z)
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Corollary III.1.4. If there exists an S(t,k,v) then (’;:Z) divides (g:;) for each 1 =0,1,2,
o t—1.

Proof. Indeed by using Theorem II1.1.2 there exists S(t — i,k —i,v — i) for each i =
0,1,2,...,t — 1. Then apply Theorem III.1.3.

]

Example III.1.5. In a Steiner system S(2,3,9), the base set is 2 which has nine elements
and for convenience suppose = {1,2,3,4,5,6,7,8,9} with positive integers. Then our
blocks have size 3 with the property that any pair lies in only one block. Notice that, the
number of blocks from Theorem II1.1.3 is (g)/(g) = 12, and the blocks are {1,2,3}, {4,5,6},
{7,8,9},{1,4,7}, {2,5,8},{3,6,9}, {1,5,9}, {2,6,7}, {3,4,8},{2,4,9}, {3,5,7} and {1, 6, 8}.
Example II1.1.6. In a Steiner system S(3,4,8), the base set is  which has eight elements
and for convenience suppose 2 = {A, B,C, D, E, F,G, H}. Then our blocks have size 4 with
property that any 3-element lies in only one block. Notice that, the number of blocks from
Theorem I11.1.3 is (g)/(é) = 14, and the blocks are {A, B,C,H},{A,D,E,H}, {A,F,G,H},
{B,D,F,H}, B,E,G,H,{C,D,G,H},{C,E,F,H},{D,E,F,G},{B,C,F,G},{B,C,D, E},
{A,C,E,G}, {A,C,D,F},{A,B,D,G} and {A, B, E, F}.

Corollary II1.1.7. The S(2,3,7) exists. This is clear from Theorem III.1.2 and existence
of 5(3,4,8).

Remark ITI.1.8. It is not necessary there is a Steiner system for any three integers num-
bers as an example S(2,3,8) is not a Steiner system since (‘;’) does not divide (g) which

contradiction with Theorem III.1.3.

IT1.2 Steiner system S(5,8,24)

Definition IT1.2.1. A Steiner system S(5,8,24) is a set of all sets of size 8, which are subsets
of a set of size 24 elements, say 2 with property that any subset of size 5 of €2 appears in

only one of the 8-element sets which are called octads, i.e.

5(5,8,24) = {B< Q:¥VX Q3 B|XcB,|Bl=8 and |X|=5}.
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Theorem II1.2.2. [Cur, Theorem A] A Steiner system S(5,8,24) exists.

The first claim is that the power-set of 24-element set is a vector space with 24
dimensions over GF(2) and the addition operation is defined by symmetric difference

in P(€2).

Proof. Suppose Q = {aj,as,as,a4,...,as}, and V is a vector space with 24 dimen-
sions over GF'(2), which has a standard basis {(1,0,0,...,0,0),...,(0,0,0,...,0,1)}.

Moreover, the operation is symmetric difference. Let define the map
¢:P() -V, by

i;=1 ifa ey,
Y — (Zl,...,Zj,...,Z24),

;=0 ifa; ¢Y.
We need to show that ¢ is surjective, injective and a group homomorphism, let ¥, X
be subsets of Q and (Y)¢ = (i1,...,4,...,024) = (X)¢ = (k1,...,kj,..., kos). This
implies that 7; = k; for all j = 1,...,24 and i; = 1 = k; for some j. Hence, a; € X
and a; € Y, thus, X = Y. Therefore, ¢ is an injective function. Notice that, since
V| = |P(Q2)| = 224 and ¢ is an injection, this implies that ¢ is a surjective function.
Now, we need to show that ¢ is a group homomorohism, suppose that X, Y € P(Q)
and
X+Y=Z={a;|a;e X\Y or a; e Y\X}.
Hence, (X +Y)¢p = (Z2)¢ = (t1,ta,... . t;,... ,toa), where t; = 1 if k; # i; and zero

otherwise. This is the sum of

(k]l,kg,...,kj,...,k}24)+(il,iQ,...,ij,...,iQ4) == (X)(Z)+(Y)¢

Moreover, it is easy to see that (AX)¢ = A(X)¢, where A € GF(2) = {0,1} and
X € P(Q2). Thus, P(Q2) = V. As a result, P(Q) is a vector space over GF(2) with

basis (e1, s, ..., €94), where
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th

e = : — (0,0,...,1,...,0)

where ¢ = 1,2,3,...,24. L]

Example I11.2.3. If X = {ag, as,a14,a15} = then

X = {a2;a37a147a15} = j = (07 171707070707070707070707071717 s 70)

The second claim is that we need to produce a subspace @ of P(Q2) such that ¢ =
{X € P(Q) : |X| = 8}. Moreover, ¢ contains 759 octads and the set that contains
all these is called ¢ which is S(5,8,24). Notice that, if the Steiner system S(5,8,24)
exists, then from Theorem [II.1.3 there are (24)/(2) = 759 octads.

5
Tx
T X
T
Proof. Let A = [ %] be a set of 8 element and consider P(A) as a 8-dimensional vector

space over GF(2) as before. Now, suppose that we have any two subspaces of P(A),
let say P and L which are 3-dimensional, whose members are tetrads, and P L = .

Let assume P and L as following:

T T 2 1
p_ 7 |z |z T 1 R A R
T x T T T x T 2
T x T T a € x
0 A B C D E F G
r &€ X v
T r . Tr T €X
L = y LT ) ) L ’ L ) ’
T xr X r T xr r T
i r T T Tx L By
0 a b c d e / g
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As you see from table II1.1, (P, *) is an abelian group, and it is closed under mul-
tiplication by A, where A € GF(2) = {0,1}. Hence, P is a subspace of P(\) over
GF(2).

* 0 A B C D E F G
0 0 A B C D E F G
A A 0 c B E D G F
B B C 0 A F G D E
C C B A 0 G F E D
D D E F G 0 A B C
E E D G F A 0 C B
F F G D E B C 0 A
G G F E D C B A 0

Table ITI.1: Group multiplication of elements in P

Similarly, As you see from table I11.2, (L, %) is an abelian group, and it is closed under
multiplication by A, where A € GF'(2) = {0,1}. Hence, L is also a subspace of P())
over GF'(2).

Remark II1.2.4. 1. P is called the point-space, and L is called the line-space.

2. Intersection of any two members of P (or L) is a subset of size 2, i.e. if X,Y € P (or

L), then | X Y] = 2.

3. Any three linearly independent of elements of P (or L) can be its basis. For example,

A, B, D € P are linearly independent, thus, {A, B, D} can be a basis of P.

4. For any member of L, let say t, there is a one-to-one correspondence to a 2-dimensional
vector space, whose members are from P. This means that for any member of L there

are three members of P, which have only two common points with the member of L and



9 I11.2. Steiner system S(5,8,24)

* 0 a b c d e f g
0 0 «a c d e f g
a a 0 f e g c b

b b f 0 g e d a c
c c e g 0 f a d b
d d g e f 0 b c

e e c d a b 0 g f
f f b a d c g e
g g d c b a e 0

Table II1.2: Group multiplication of elements in L

it has dimension two, because it is generated by any two non-zero elements, whereas

the third element is their addition, see figure I11.2.1.

Example III1.2.5. Suppose that {0, B,G,E} < P then it is a 2-dimensional vector space
over GF(2). This is the correspondence to a, see figure 111.2.1. Firstly, we need to check

common points between them

T
€T T r T
)
X
a
X 1
r T 1
x|’ L
X
a G
x xr
€T x xr
x ’ xr
X
a E

Notice that, there are two common points between a and B, G, E. Movreover, {0, E, B, G}
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is a vector subspace of 4, since it is an abelian group, and it is closed under multiplication
by a scalar. Notice that, each non-zero element B, G, E has order two and its inverse is the
element itself. It is two dimensional since it is generated by any two non-zero members, let

say F and B such that G=F + B

Remark II1.2.6. 1. If | X +¢ =4 then X €t and if | X +¢| = 2 or 6 then X ¢ ¢, i.e.
Xet,if | X(t|=2and X ¢¢,if |[X[)t| =1 or 3. An example

x x
xr x Tr X .. .
1t = Iz this implies that A ¢ a.
T T

A a A+a

2. From 1, we notice that any even subset of A can be expressed uniquely as (X + t) or

(X’ +t), where X' is a subset of A, and X + X' = A. X’ is called the complement of

X.

Let consider three copies of A and define the 12-dimensional space ¢ of P ()

Al A2 A3
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E F F
B A
a—{0,B,G,E} \ » b—{0,F,C,E} \ » c— {0,F,A,G} ;
G E G
C C A
B D D
d—{0,A,B,C} v e—{0,C,D,G} \ > f—{0,A, D, E} )
A G E

D
D
9—{0,B,D,F}
F

Figure I11.2.1: The correspondence map

Such that {[(X or X')(Y or Y')(Z or Z")]|; : X,Y,Z € Pt e L,X +Y + Z = 0} this

set is called % -set, where

XorX'| YorY'| ZorZ

[(X or XYY orY')(ZorZ')], = + i n

Example IT11.2.7. Let A,B,Ce P, A+ B+ (C =0and e€ L then
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F A
b C
c 4, & A : 7,
D
a
B B a E G
F
D
g
B
b
C
d
E

Figure I11.2.2: The one-to-one correspondence

[ABC]ez[A+e,B+e’C+€]:.r x| x|

Investigation the size of members of “-set From tables I11.3, T11.4 and I11.5 we
can obtain %3 from %-set by taking shapes which intersect with (A; + As + A3z) in 8

points.



13 I11.2. Steiner system S(5,8,24)
Shapes Description Intersection with
Ay Ay As
[0 0 0]y 0] =0 0 0 0
[0 0 0], t#0 4 4 4
[070 0]y 0] = 0,0/ = A, 0| =8 8 0 0
[0 0" 0]y 0] =0,0 =A,|0/| =8 0 8 0
[00 0] 0] = 0,0/ =A,|0/| =8 0 0 8
[07 0" 0] 0] = 0,0/ =A,[|0/| =8 8 8 0
[070 0] 0] =0,00 =A,[|0/| =8 8 0 8
[O 0" 0']o 0] =0,00 =A,[|0'| =8 0 8 8
(070 ]0 0 =A,[0]=38 8 8 8
[0/ 0" 0']; 0'=A0]=8t#0 4 4 4
[X X 0]o | X|=4,10l=0 4 4 0
[X 0 X]o | X|=4,10l=0 4 0 4
[OXX] | X|=4,10 =0 0 4 4
[X” X7 0]o X+X' =A|X|=|X|=4,]0l=0 4 4 0
[X70 X' X+X' =A|X|=|X|=4,10/=0 4 0 4
[0 X" X']o X+X' =A|X|=|X|=4,]0l=0 0 4 4
[X X 0o | X|=4,0=A,[0|=8 4 4 8
[X 0 X]o | X|=4,0=A,[0|=38 4 8 4
00 X X]o | X|=4,0=A,[0|=8 8 4 4
(X' X' 0o | X+X' =A|X|=|X"|=4,0=A,0]=8 4 4 8
[X'0 X']o | X+X' =A|X|=|X"|=4,0=A,0]=8 4 8 4
[0 X' X' | X+ X' =A,|X|=]X|=4,0=A,|0]=8 8 4 4
[X X 0], Xet#0,|X|=|X'|=4 4 4 4
[X 0 X], Xet#0,|X]|=|X"|=4 4 4 4
[0 X X], Xet#0,|X]|=|X|=4 4 4 4
[X" X' 0], Xet#0,X+X' =A|X|=]X'|=4 4 4 4
[X0 X'], Xet#0,X+X' =A|X|=|X'|=4 4 4 4
[0 X" X'], Xet#0,X+X' =A|X|=|X"|=4 4 4 4

Table I11.3: The size of members of %-set [
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Description Intersection with

=
&

Xet£0,X+X =A,|X|=|X'| =4
Xet#0,X+X =A,|X|=|X'| =4,10/ =0
Xet#0,X+X =A,|X|=|X'| =4,10/=0
Xet#0,X+X =A,|X|=|X'| =4,]0/=0
Xet£0,X+X =A,|X|=|X'|=4,10/=0
Xet£0,X+X =A,|X|=|X'| =4,10/ =0

Xet+#0,]X]=4,0=A,]0| =8
Xet+0,|X]=4,0=A10|=8
Xet+0,|X]=4,0=A10=8
Xet£0,X+X =A,|X|=|X|=4,]0| =8
Xet£0,X+X =A,|X|=|X|=4,]0| =8
Xet£0,X+X =A,|X|=|X'| =4,]0| =8
Xet£0,X+X =A,|X|=|X'| =4,]0| =8
Xet#0,X+X =A,|X|=|X'|=4,0| =8
Xet#0,X+X =A|X|=|X'| =4,0| =8
Xet£0,X+X =A,|X|=|X|=4,]0| =8
Xet£0,X+X =A,|X|=|X|=4,]0| =8
X¢t#0,|X]=2,]X'|=6,0=0
X¢t#0,|X]=2,]X'|=6,0[=0
X¢t#0,|X]=2,]X'|=6,00[=0
X¢t£0,X+X =A,|X|=2,|X|=6,]0=0

X¢t£0,X+X =A,|X|=2|X|=6

X¢t£0,X+X =A|X|=2|X|=6

X¢t#0,X+X =A|X|=2,|X|=6

X¢t#0,X+X =A|X|=2,|X|=6

X¢t#0,X+X =A|X|=2,|X|=6

X¢t£0,X+X =A,|X|=2|X|=6

NI N S N N S = T =S S N S S S S S St Gt S S S S SO SO
N o I T T = = o N N S S N S S S S S .S S O S SO SO SO

X¢t#0,X+X =A[X]=2X'|=6

Table I11.4: The size of members of %-set 11

=

= I N R e = R e L s N N R T T T o N T N — N =N SN
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Shapes Description Intersection with

Ay Ay As
[X'0X], Xe¢t#0,X+X =A|X|=2]X|=6 6 4 2
[X X 0], X¢t#0,]X|=2,]X|=6,]0]=8 2 2 4
[X 0 X], X¢t+0,]X]=2]X]=60]=8 2 4 2
[0 X X], X¢t#0,|X]=2|X|=6 4 2 2
(X' X'0], | Xe¢t#£0X+X =A|X|=2|X|=6]0=8 6 6 4
[(X'0X'], | Xe¢t#0,X+X =A|X|=2,|X'|=6,|0| =8 6 4 6
[0 X" X', | X¢t#0,X+X =A|X|=2|X|=6,]0]=38 4 6 6
[XX'0], | X¢t#0,X+X =A|X|=2,|X'|=6,]0]=8 2 6 4
[(X'X 0], | X¢t#0,X+X =A|X|=2,|X'|=6,|0| =8 6 2 4
[0 X X', | X¢t#0,X+X =A|X|=2,|X'|=6,[0|=38 4 2 6
[0 X' X], | X¢t#0,X+X =A|X|=2,|X'|=6,]0|=38 4 6 2
(X0 X | Xe¢t#0,X+X =A|X|=2,|X'|=6,]0| =8 2 4 6
(X0 X], | X¢t#0,X+X =A,|X|=2|X'|=6,]0/]=38 6 4 2
(XY Z] X+Y+Z=0,|X|=|Y|=|2 =4 4 4 4
[X'Y" Z', X+Y+2Z=0,X|=|Y|=|2|=4 4 4 4
(XY Z)], X,Yet, X+Y+Z=0,|X|=|Y|=1|2Z =4 4 4 4
[(X'Y'Z, | XY, Zet,X+Y+Z=0,|X|=|Y]|=|Z =4 4 4 4
(XY Z], Xet,Y,Z¢t,X+Y +Z=0,|X|=4,]Y|=|Z]=2 4 2 2
(XY ' Z], | Xet,Y,Z¢t,X+Y +Z=0,|X|=4,]Y'|=2,|Z| =6 4 6 2
(XY Z'|y | Xet,Y,Z¢t,X+Y +Z=0,|X|=4,]Y|=2,]Z'|=6 4 2 6
(XY 7', | Xet,Y,Z¢t,X+Y +Z=0,|X|=4,]Y'|=|Z'|=6 4 6 6
(XY Z], Xet,Y,Z¢t,X+Y +Z=0,|X'|=4,]Y|=|Z] =2 4 2 2
[(X'Y' ' Z)y | Xet,V,Z¢t,X+Y +Z=0,|X'|=4,]Y'|=6,|Z| =2 4 6 2
(XY Z'], | Xet,Y,Z¢t,X+Y +Z=0,|X'|=4,|Y|=2,|Z'|=6 4 2 6
[(X'Y'Z'|, | Xet,Y,Z¢t,X+Y +Z=0,|X'|=4,|Y'|=|2'|=6 4 6 6

Table II1.5: The size of members of %-set 111
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Case Shapes The number of Octads
1 [0/ 0 0]p, [0 0 0]o, [00 0o 1x3=3
2 [X X 0]o, [X 0 X]o, [0X X]o, [X" X' 0]o, [X' 0 X']o, [0 X" X']o 7Tx12 =84
2 [X X’ 0]o, [X 0 X']o, [0 X X']o, [X' 0 X]o, [X 0 X]o, [0 X" X]o 7Tx12 =84
3 [X X0, [X0X']e, [0X X'y, [XT0 X, [X'0X]y, [0 X X, 7x4x6=168
4 (XY Z), [ XZY], [X'Y Z],, (X' ZY]), 7Tx3x3x2x4=504

Table II1.6: Count the Octads

Table I11.6 shows all possibilities for the octads shape. In particular, the first case shows
all possibilities for ordering 0,0’ and ¢ = 0, which are three possibilities. The second
case presents all the possibilities of ordering X, X', 0 and ¢ = 0, which are 12 shapes
times the number of ways of choosing X € P\{0} = {A,B,C, D, E, F,G} which is 7.
The third case shows all the possibilities of ordering X, X’,0 and X ¢ ¢ # 0, which are
6 shapes. And from figure I11.2.2, we can find out there are four possibilities to choose
t e L\{0} = {a,b,c,d,e, f,g}, where X ¢ ¢, (| X +t| # 4), so it is 4 x 6 x 7. The fourth
case shows all the possibilities of ordering X, X' Y, Z and X et #0,Y ¢ t, Z ¢ t and
X +Y + Z =0, which are four shapes. Moreover, From figure [11.2.2, there are three
possibilities to choose t € L\{0} = {a,b,c,d,e, f,g}, where X € t, X € P\{0}. And
there are three choices to choose Y € P\{0, X} = {A, B,C, D, E, F,G} and there are
two choices to choose Z € P\{0, X,Y} ={A,B,C,D,E, F,G}. Hence, 7Tx3x3x2x4.
Therefore, | 45| = 3+ 84+ 168 + 504 = 759 octads. Furthermore, it is satisfied that any
5-element lies in only one Octad of 63 < €. (If it is not, then there exists X, Y € %5 such
that | X| =8, |Y| =8 and | X (Y| = 5, but this is impossible since that | X + Y| < 6,
and X + Y ¢ % which is a contradiction the fact that 4" is a vector space.) Hence,
S(5,8,24) = %5, and [S(5,8,24)| = 759.

Definition IIT.2.8. If X is an octad which not equal to Ay, Ay or Ag, then | X (A;] = 4
for some i = 1,2,3. We called A; a heavy brick for X. In this case |X (\(A; + Ag)| = 4 for
{i,7,k} = {1,2,3} and we called X [\(A; + Ay) a square tetrad.
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Example II1.2.9. As you see in A} is A’ +0 and in Af is A+ 0, whereas Aj is empty. Since
|A]| = |AS| = 4 then either A} or A} is a heavy brick and a square tetrad

AL Ay Ay
Tr T
Tr T
[A" A0]p = T
Trx

Example II1.2.10. Asyouseein A} is 0'+a = A+a = o’ and [A]| = 4, whereas Ao+ Af| = 4.
This implies that A} is the heavy brick and (A5 + A%) is the square tetrad

Ay Ay A
T |z |z
PoAr AT
(07 A" A0 = T x| x|

Example ITI.2.11. As you see in A} is E' + b and |AS| = 4, whereas |[A] + A%| = 4. This
implies that Af is the heavy brick and (A} + A%) is the square tetrad

/ / /
x|
x|z

[D E" A, =

Remark IT1.2.12. 1. There are 70 possibilities to arrange four points in eight places (so
there are 70 heavy bricks). Suppose that z1, 22, x3 and x4 our four points in the heavy

brick. Then, there are

1|2 x1 — 8 Choices to put z; in any of the eight squares.
31 4 x9 +— 7 Choices to put x5 in any of the eight squares.
5 1 6 x3 — 6 Choices to put x3 in any of the eight squares.
713 x4 — 5 Choices to put x4 in any of the eight squares.

Figure I11.2.3: Arrange four points in eight places

However, 1 = xo = x3 = x4, hence, the ordering is not important and there are
repeated brick so to avoid this in figure 111.2.3 we need to divide by 4!. Therefore,
(8 x 7 x 6 x 5)/4! = 70 heavy bricks.
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2. All possibilities to arrange four points in 16 places (square tetrad) is 140 bricks, as-
suming the property that the number of points in each columns should be equal to

(mod2), i.e. 2k =~ 0, where k € Z. Similarly, for rows.

Shapes of columns There are 4 + (6 x 6) + (6 x 6) + 24 + (6 x 6) + 4 = 140 brick
tetrad, see figure 111.2.4.

1 2 3 4  (4000)x4,with (1111)x 1 one point in each row.
al 1 | 2 9 110 | (2 2 0 0)x6,with (2200) x 6 shapes of rows.
bl 3 [ 4 | 11]12 ] (2 20 0)x6,with (1111) x 6 one point in each row.
c| 5 16 [ 13]14 | (1 111)x24, with(1 1 1 1) x 1 one point in each row.
dlL 7 18 [ 15]16 ] (1 1 1 1)x6,with (2 2 0 0) x 6 shapes of rows.
(1 111)x1,with(4 0 0 0) x4 shapes of rows.

Figure I11.2.4: Shapes of columns

Example IT1.2.13. Suppose that the shape of columns is (4 0 0 0) and the shape of rows

is (1 1 1 1), all possibilities to arrange these shapes in 16 places are in figure I11.2.5.

4 0 0 0 0 4 0 0O
1] = 1 T
11 x v ] x )
11 x 1 x
1| x 1 €
0 0 4 0 0 0 0 4
1 T 1 T
1 x r ] x
1 x 1 x
1 T 1 T

Figure II1.2.5: The shape of columns 4 0 0 O and rows 1 1 1 1

Definition I11.2.14. A picture contains a group of heavy bricks and a group of square bricks.
Moreover, the 35 pictures are obtained from the one-to-one correspondence that is from 70

heavy bricks that are divided into two groups, (saying |X| = |Y| = 4 in the same group if
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X +Y = A, see figure [11.2.7), to 140 square tetrads that are divided into four groups, (saying
|U| = |V| = |W]|=|Q| =4 in the same group if U +V + W + Q = A + A, see figure I11.2.7).

Example IT1.2.15. Figure I11.2.6 is the picture (1) in MOG, see figure I11.3.1. This picture

consists of a correspondent group of heavy bricks to a group of square bricks.

€T %
T T
r | o
>
T T r
T
2 €T
X
U Vv
x X
T xz ’ -
N
x X z
x ) "
Y
1474 Q
Figure II1.2.6: Picture (1)
where
T T T
rzr| _ |xx
1 v T |z
T z T T
X Y A
1 T 1
) + T + T +
1 T a
1 T r
U Vv W
v |z r
p— /I. :I;
x T |2
T |z |z
Q A+ A

Figure I11.2.7: The picture
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ITI.3 The Miracle Octad Generator (MOG)

Definition IIL.3.1. The Miracle Octad Generator (MOG) is 36 pictures which are one
of them shows named of points, whereas 35 pictures contain pair of brick tetrads and the
corresponding group of square bricks. Moreover, taking any one of the pair together with

any one of square bricks in the same group is an octad.

Remark II1.3.2. 1. There are all the symmetries bodily permuting of Aj, Ao, A3 in
MOG figure, see figure I11.3.1.

2. The heavy brick in these picture is in A;. The square tetrad is in Ay + As.

3. We obtain an octad by taking either of the brick tetrads together with any one of the

square tetrads from the same picture.

4. red and blue present two different heavy bricks, and in the same picture, red square,

blue square, purple circle and green circle present four different square tetrads.

Example IT1.3.3. [Cur| To find the octad that contains points 22,1,12,6,8 in MOG, we

need to do

Step 1: We should assign the points in Ay, Ay, A3 by using picture (7) in MOG, see figure
II1.3.1

A1 A2 Ag

Step 2: Finding the heavy brick which here is Ag (since |A3| = 4) and it is in picture (31) in
MOG, see figure 111.3.1
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(36)

(34)

Figure I11.3.1: The Miracle Octad Generator (MOG)
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22 II1.3. The Miracle Octad Generator (MOG)

Step 3: Looking for square tetrad that contains (point 8), but in picture (31) there are four

square tetrads

Tr T Tr T

@ (IT) (IIT) (IV)

Hence, 8 isin A; this implies that (III) is the square tetrad which contains (22, 1,12, 6, 8)
and then the octad is

=(0,8,16,7,22,1,12,6).

Example II1.3.4. [Cur] To find the octad that contains points 0, 15, 18,5, 6 in MOG, we

need to do

Step 1: We should assign the points in Ay, Ay, A3 by using picture (7) in MOG, see figure
II1.3.1

Step 2: Finding the heavy brick which is A; (since |A;| = 3) and it is in one of these pictures
(6), (8), (28) or (35) in MOG, see figure I11.3.1. However, A3 should contain (points
5 and 6). Therefore, the heavy brick should be

Step 3: Looking for square tetrad that contains (points 5 and 6), but in picture (6) there are

four square tetrads
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x
X

(D (IT)

(IIIj

(IV)

Since (points 5 and 6) are in A3 this implies that (I) is the square tetrad which contains

(5,6,12,4,17) and then the octad is

€Tr|x
€T x

Tr X X

=(0,15,14,18,17,4,5,6).

Example III1.3.5. [Cur] To find the octad that contains points 0, 14,2, 22,21 in MOG, we

need to do

Step 1: We should assign the points in Aj, Ay, A3 by using picture (7) in MOG, see figure

I11.3.1
Ay As A3
X X
e X
’ X
X

Step 2: Finding the heavy brick which is either A; or As, since |A1| = 2 = |Ag|. If A3 is the

heavy brick, then it is in one of these pictures (2, 3, 5, 12, 14, 16, 19, 21, 23, 25, 26,

30, 33 and 34). However, all the corresponding square tetrads in these pictures do not

contain (points 14, 0 and 2) in any of their square tetrads. Therefore, A; must be the

heavy brick which is in pictures (5, 6, 9, 10, 12, 13, 14, 16, 17, 19, 22, 26, 29, 30 and

36). Since square tetrad must contain (points 2, 22 and 21). This implies that the

picture must be (36). Hence, the heavy brick is

Notice that, the square tetrad is

Ay

€T

T
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x|
x|T
Hence, the octad is
r x| wlw
L = (0,0,14,20,11,22,2,21).
r|x

Corollary IT1.3.6. Steiner systems S(4,7,23) and S(3,6,22) exist.

Proof. Indeed, we can obtain S(4, 7, 23) from Theorem I11.1.2 and existence of S(5, 8, 24).
Moreover, the number of blocks from Theorem II1.1.3 is (243) / (Z) = 253 blocks. Sim-
ilarly, S(3,6,22) can be obtained from Corollary I11.1.4 and existence of S(5,8,24).
The number of blocks from Theorem II1.1.3 is (232) / (g) = 77 blocks. In general, let
Ss = {a1,az, a3, a4, a5, ag, a7, as} be an octad and S; = {a1,as,as,...,a;}, where j < 7.
Figure I11.3.2 shows the number of octads intersecting S; in S;, where (j + 1) is the
entry and (i + 1) is the line. As an example, let a, § € Q then there are 253 — 77 = 176

octads that contain «a not . O

759
506 253
330 176 7
220 120 56 21
130 80 40 16 5
78 52 28 12 4 1
46 32 20 8 4 0 1
30 16 16 4 4 0 0 1
30 0 16 0 4 0 0 O 1

Figure II1.3.2: The Leech triangle

Remark ITI1.3.7. 1. The ninth line in figure I11.3.2 shows that any two octads intersect

in 0, 2, 4 or 8 points.
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2. There is another way to count how many octads contain ¢ points which is (254__;) / (2:2),

where 0 < ¢ < 4. Moreover, it is 1, where ¢ > 5.

Lemma I11.3.8. [Cur, Lemma 1] If S,T € €5 and |S(\T| = 4, then S+ T € 5.

Proof. Let S = {ay,as,...,as}, T = {ay, as, as, ay, bs, bg, bz, bs} be two octads and sup-
pose T+S ¢ ¢5. Considering another octad, let say W which contains (as, ag, a7, as, bs).
From Remark I11.3.7 there are no two octads which intersect in one point. Therefore,
W contains a further point of 7" and not a’s since then |[S(\W/| = 5, so, let say bg.
Similarly, with W, that contains (as, ag, a7, as, b7), let say bs. However, considering the
octad Wy that contains (as, ag, ar, bs, by) implies that W5 must contain a further point
of S. If ag € Wy then |[W; (\Ws| = 5, let say ay, but then W, must contain another
point of T If a’s is added then |S (W] = 5, and if bs is added then |W; () Wa| = 5.
Moreover, if bg is added then |T'()Ws| = 5. In each case we reach to a contradiction,

hence T'+ S € %s.

]

Definition IT1.3.9. Let Y =Y; w Y5 --- u Y be a decomposition of Y into disjoint sets Yj,
and X is a subset of Y. If |Y; () X| = r; points, 1 <4 < s then X cuts this decomposition as

r1.79. - .rs, where | X| =r; + 1o+ - + 1y

Corollary II1.3.10. [Cur] There is a partition of the twenty-four points into siz tetrads,
which is an correspondence to each four-point of Q, let say Y;, i = 1,...,6 then Q =Y v
YouYswYywYswYs, where |Y;| = 4,1Y; +Y;| =8, 4 # j and i,j = 1,...,6. Moreover,
Y1,Y5, Y3, Y, Y5, Ys is called a sextet.

Lemma IT1.3.11. [Cur, Lemma 2] An octad cuts the siz tetrads of a sextet 42 -0%, 3-15 or

24.02.

Proof. Let Y be a set of 24 points, X € V| X| =8, and Y =Y, uYouYsuY,uYsuYs.

There are three cases,
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Case 1.

Case 2.

Case 3.

If |Y;(\X| = 1 point, where ¢ = 1,...,6 and |X| = 8, then there are two
points left, if the two points in the same Y, let say Y then |Y; () X| = 3. Since
(Y + Y;)(X| = 2 or 4, where i # j and i,j = 1,...,6. Hence, X cuts Y;
as 3.1.1.1.1.1, whereas, if the two points in different Y;, let say Y; and Y5 then
|(Y1 + Y3) () X| = 3 which is a contradiction with Lemma II1.3.11.

If |Y;(X| = 2 points, where i = 1,...,6 and |X| = 8 then there are only
four Y;, let say Y, Y5, Y; and Y, which intersect with X in two points. Hence,
|(Y; +Y;)(X]| =0,2 or 4, where ¢ # j and 4,5 = 1,...,6. Hence, X cuts Y; as
2.2.2.2.0.0.

If |Y; () X| = 4 points, where i = 1,...,6 and | X| = 8 then there are only two Y;,
let say Y7 and Y which intersect with X in four points. Hence, |(Y; +Y;) () X]| =
0,4 or 8 where i # j and 7,7 = 1,...,6. Hence, X cuts Y; as 4.4.0.0.0.0.

]

Lemma I11.3.12. [Cur, Lemma 3] The intersection matriz for the tetrads of two sextets is

one of the following:

4 0000 0] [ 2 200 0 0]
040000 22000 0
004000 002200
(I) , (IT) ,
000400 002200
000040 0000 2 2
00000 4 000022
(2000 1 1] (3100 0 0]
020011 130000
002011 001111
(111) , (IV)
000211 001111
111100 001111
11110 0 (001 1 1 1
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Proof. Let Y1,Ys, Y3, Yy, Y5, Ys and 74, Zs, Z3, Z4, Z5, Zg be the two sextets. Suppose
that Y; +7Y] is an octads and Zj, is a sextet, wherei # j,4,7 =1,...,6 and k =1,...,6.
By using Lemma I11.3.11 we get these matrices, where the entry in ith row and j*

column is the intersection of Y; and Z;.

Example I11.3.13.
Zv Zoy Z3 Ly Zs Zg

a1 3 0 0 0 0
;0 o 1 1 1 1
valo o 1 1 1 1
vslo o 1 1 1 1
Ys\0 0 1 1 1 1

Let Y7 + Y5 be an octad then it cuts Z1 w Zs v Z3 w Z4 W Z5 w Zg as 4.4.0.0.0.0. Suppose
that Y7 + Y is an octad then it cuts Z1 v Zs w Z3 w Z4 w Z5 w Zg as 3.1.1.1.1.1.

Theorem I11.3.14. [Cur, Theorem B] The Steiner system S(5,8,24) is unique.
Proof. Suppose that Q = {20,0,1,...,22} and O; < Q is an octad such that x;, zo, 3,

x4, s, T in O1 and x7 € Q\O;. Notice that, we can write O; + € in 4 x 6 array where

the first two columns are O,

T1X5|T7
T2 T6

3
x4

Assuming that Sy, is a sextet such that it defines by the tetrad Y, = {x1, s, x5, x4}.

Then by rearranging the un-named 17 points we get this

> 0

X

x 0
Sw - P

X

> 0
r 0

N NN DN

e
W wlww
[ SN
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Notice that, Sox = Y, v Yy u Y] v Y5 v Y3 w Y, which means that S, is a sextet.

Moreover, Oy cuts S, as 4.4.0.0.0.0. Notice that, considering the octad, let say O,

such that o, x3, 24, 5, g, x7 € Oy. Then Oy cuts Sy, as 3.1.1.1.1.1 and

So =

8 88 ©

oo =
oW =
oW =

1s a sextet.

Notice that, from figure [11.3.2 the number of disjoint octads from O; is 30 octads.

If we consider the octad, let say O3z such that zq,x3, x4, 25,27 € O3. Then O3 cuts
both Sy, and Sp as 3.1.1.1.1.1, where |O3 (Y| = 3 points and |O5 (V1| = |03 V2| =
|03 Y3| = |O3()Ys| = 1 point. This implies that

Si =

o o|o 8
S oW —
OIS PN
O W
N S

1s a sextet.

Notice that, the group of permutations that preserve the sextets Sy, So and S; is given

® @@ ajjazas
® @ |C1b|dye3
™ = - 3
® @ |c2e1|byds
® @ (C3d|e2bs

s

I
IR

°

I
IR
I
IR

where dots denote fixed points and 7 is a 3-element taking

where x; € {a;, b;, ¢;,d;, e;}. Let Oy be an octad such that z1, z9, x5, 26, x7 € O4. Then

O, cuts Sy, as 2.2.2.2.0.0. Let assume that O cuts the first four columns of S, by

using m it is as 2.2.2.2. Also, Oy cuts Sy as 2.2.2.2.0.0. Thus, we got the top two points

of the fourth columns

88
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Thus,

Sy 1S a sextet.

SN IO
FNEFNY IO

o o8 8
W W~ =
W W= =

Notice that, O, = Y, v Y;. Let Os contain x1, xq, x3, T5, v7 such that Os # Oy, O3, O,
or O and Oy cuts Sy, Sp and Sy as 3.1.1.1.1.1. Therefore, Os must be

Tr|x Xr|r

€T
T T

or

=

Figure I11.3.3: An octad

By using the permutation « these are equivalent. Let assume that

vzl 2[3 4
z0[3 4|1 2],
Sy = o021 302 1| 1s & sextet.
00]|21]43
Notice that, from figure 111.3.3
vzl 2]3 4
r 04 32 1].
Si= [ oTa 111 3] is a sextet.
v 0|3 4|1 2

Let consider the octad that contains these points

It must have further points in the second column and two points in one of the last

three columns, but since it cuts S, So and S; as 2.2.2.2.0.0, we get
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For the one point further that is in the second column we might have one of the

following

Tr T TrTr|\r T rTr|\rxT

rx rT|\Tr T T Trx

(D (ID) (I1T)

The first case (I) fails to cut Sy. (Because it cuts as 3.1.2.2.0.0 which is a contradiction
with Lemma I11.3.11, wheras (II) and (III) are equivalent under p, so we might take

(IT) as our octad

Thus,

1s a sextet.

N =N

o 8O R
[

Now, we get S, Sp, 51,92, S3, S4, S5 and to obtain the 28 sextets remaining, we need

the following Lemma. O

Lemma I11.3.15. [Cur, Lemma 4] If every octad intersecting a given octad O in four points

is known, then all octads follow by symmetric differencing.

Proof. Let O be the given octad and z,y,z € O, which are distinct points. From
figure I11.3.2 there are 21 octads containing z,y,z. However, from Remark II1.3.7

and Lemma [I1.3.8 any two octads intersect in 0, 2, 4 or 8 points. Therefore, the
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intersection must be in four points so their symmetric difference is an octad disjoint

21

2) = 210 pairs, which are disjoint from z,y, z in

from x,y, z. Notice that, there are (
21 octads. Since suppose that U; is an octad such that z,y, z € U;, where ¢ = 1,2, 3, 4.
If Uy + Uy = Us + Uy then Us or Uy must contain further two points from U \{z,y, 2},
let say Us. Thus, |U; (Us| = 5, Uy = Us and this implies that Uy = U,. Therefore, all

210 pairs are unique.

Using figure I11.3.2 again the third line consists of all the disjoint octads from x,y, 2.

Hence, we know every octad that is disjoint from O by three points. ]

Corollary II1.3.16. The set of all permutations of 24-element, Q that preserve S(5,8,24),
and it has form quintuply transitive is a subgroup of symmetric group of 24-element, Soy.

Moreover it has order 244, 823, 040.

Proof. Notice that, the set of all the permutations is a group and it is sharply transitive
on sets which contain 7 points, let say 1, x9, 3, x4, 5, Tg, T7, Where xq, x2, T3, T4, T5, Tg
in the same octad O, whereas 27 € Q\{0}. There are 24 ways of choosing x; from (2, 23
choices for choosing x5 and there are 22, 21, 20 choices for 3, x4, x5, respectively. Notice
that, 2 € O and |O| = 8. Hence, there are three choices for zg. Finally, there are 16

choices for choosing x7 € Q\O. Therefore, 24 x 23 x 22 x 21 x 20 x 3 x 16 = 244, 823, 040.

]

Definition IT1.3.17. The 5-transitive group preserving %3 is called Moy = {0 € Sa4 | O, €
s, for all O e ¢3}. Moreover, subgroups of Ms, are Mayy, where (k < 5) which are fixed

k-points.

Remark IT1.3.18. The points of 2 are o0, 0, 1,2, ..., 22 and they number as the project line.
Suppose that o € My and o(o) = 23, (notice that |M24|/23) such that o : ¢ — i+ 1 (mod
23) and it fixes 00, i.e. 0 = (0)(01234567891011 1213 14 1516 17 18 19 20 21 22).
Let v € Q such that v : i — =1. This implies that v = (0 c0)(1 22) (2 11)(3 15) (4 17)
(5 9) (6 19)(7 13) (8 20)(10 16) (12 21)(14 18). Thus, v € Moy since (S;)y, where i =
0,0,1,2,3,4,5 is a sextet.
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