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§ I INTRODUCTION

The Mathieu groups are M11, M12, M22, M23, M24, which are one family of the 26 spo-

radic finite simple groups. They were discovered by the French mathematician Emile

Mathieu, see table I.1. Furthermore, the first expression of simplicity and uniqueness

of Mathieu groups was in 1930s in a paper by Witt, and a Steiner system was described

in that paper. Now, we are normally using the system to describe these groups. The

largest Mathieu group is M24 which is 5-transitive of 24-point, and it could be defined

as a group of preserved permutations of Steiner system Sp5, 8, 24q. Notice that, some

of M24’s simple subgroups are M23, M22, M12 and M11. This project is started by

introducing some basic facts, moving to the definition of Steiner system and some of

its properties, following by discussing the Steiner system Sp5, 8, 24q, then presenting

the Miracle Octad Generator (MOG). In the end, we introduc the concept of M24.

The main two sources for this project are (An introduction to Steiner systems by M.

Grannell and T. Griggs, [GrGr]) and (A new combinatorial approach to M24 by R.

Curtis, [Cur]).

Group Order Discovered by Date

M11 24 ¨ 32 ¨ 5 ¨ 11 Mathieu 1873

M12 26 ¨ 33 ¨ 5 ¨ 11 Mathieu 1873

M22 27 ¨ 32 ¨ 5 ¨ 7 ¨ 11 Mathieu 1873

M23 27 ¨ 32 ¨ 5 ¨ 7 ¨ 11 ¨ 23 Mathieu 1873

M24 210 ¨ 33 ¨ 5 ¨ 7 ¨ 11 ¨ 23 Mathieu 1873

Table I.1: The Mathieu groups

1



§ II PRELIMINARIES

II.1 Background

Definition II.1.1. GF p2q is a finite field with 2 elements t0, 1u.

Definition II.1.2. A set that contains four elements is called a tetrad.

Definition II.1.3. Let V is a non-empty set and K is a field. Then V is called a vector space

over K if V is an abelian group under addition and it is closed under a scalar multiplication,

let �,� P F, v, v1, v2 P V , then

1. p� ` �qv “ �v ` �v,

2. �pv1 ` v2q “ �v1 ` �v2,

3. p��qv “ �p�vq, and

4. 1v “ v.

Definition II.1.4. Let G be a group and N • G,then N is a normal subgroup if and only if

for all g P G we have Ng “ N .

Definition II.1.5. A non-trivial group G is called a simple group if it has no proper non-

trivial normal subgroups.

Definition II.1.6. An action of a group G on a non-empty set ⌦ is a binary operation

˚ : ⌦ ˆ G Ñ ⌦, such that for all ↵ P ⌦, ↵ ˚ 1 “ ↵ and p↵ ˚ gq ˚ h “ ↵ ˚ pghq for all g, h P G.

The degree of action G on ! is the cardinality of ⌦.

2



3 II.1. Background

Definition II.1.7. Let G act on a set ⌦ and ↵ P ⌦. Then ↵G “ t↵g | g P Gu Ñ ⌦ is called

the orbit of ↵ under G.

Definition II.1.8. Let G be a group acting on a non-empty set ⌦.

1. If ↵ P ⌦ then G↵ “ tg P G | ↵g “ ↵u is called the stabiliser of ↵.

2. If G has only one orbit, i.e. ↵G “ ⌦ for ↵ P ⌦ then we say that G acts transitively on

⌦.

3. A group G acts k-transitively precisely if for any two sequences of k distinct points

from ⌦, say p↵1,↵2, . . . ,↵kq and p�1,�2, . . . ,�kq there is a group element g P G such

that ↵ig “ �i for each i “ 1, . . . , k.

4. If G be k-transitive, and distinct elements ↵1,↵2, . . . ,↵k P ⌦, g1, g2 P G satisfy ↵ig1 “
↵ig2 for all i “ 1, . . . , k and g1 “ g2, then we say that G acts sharply k-transitive on ⌦.

Definition II.1.9. Let X,Y be sets, then symmetric di↵erence defines as X `Y “ Z, where

Z “ tx | px P X ^ x R Y q _ px R X ^ x P Y qu or Z “ pXzY q
§

pY zXq.

Definition II.1.10. Let G and H be groups � : G Ñ H is a group homomorphism if

pg1g2q� “ pg1q�pg2q� for all g1, g2 P G.



§ III THE MATHIEU GROUP M24

III.1 Steiner system

Definition III.1.1. A Steiner system Spt, k, vq is a set of k-element subsets of a base set

which is a set of v elements and any t-element subset of the base set appears in precisely one

of the k-element subsets which are called blocks.

Theorem III.1.2. If there exists an Spt, k, vq then there exists an Spt ´ 1, k ´ 1, v ´ 1q.

Proof. Suppose Spt, k, vq exists, ⌦ is a base set and ↵ is a fixed element in ⌦. Then

remove all the blocks which do not contain ↵, so the remaining blocks contain ↵ and

t ´ 1 elements which appear precisely once in a block. By removing ↵ from ⌦ and the

blocks we obtain that |⌦zt↵u| “ v ´ 1, and the size of blocks is k ´ 1. Hence, this is

an Spt ´ 1, k ´ 1, v ´ 1q.

Theorem III.1.3. If there exists an Spt, k, vq. Then
`k
t

˘
divides

`v
t

˘
, and the number of

blocks is
`v
t

˘
{
`k
t

˘
.

Proof. Suppose Spt, k, vq exists, |⌦| “ v and X Ñ ⌦ with |X| “ k, then the number of

all subsets of size t of X is
`
k
t

˘
. By assuming there are n sets of size k, and since any

t-element lies in only one k-element, this implies that

n ˆ

ˆ
k

t

˙
“

ˆ
v

t

˙

and n is an integer, hence
`
v
t

˘
{
`
k
t

˘
.
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5 III.2. Steiner system Sp5, 8, 24q

Corollary III.1.4. If there exists an Spt, k, vq then
`k´i
t´i

˘
divides

`v´i
t´i

˘
for each i “ 0, 1, 2,

. . . , t ´ 1.

Proof. Indeed by using Theorem III.1.2 there exists Spt ´ i, k ´ i, v ´ iq for each i “

0, 1, 2, . . . , t ´ 1. Then apply Theorem III.1.3.

Example III.1.5. In a Steiner system Sp2, 3, 9q, the base set is ⌦ which has nine elements

and for convenience suppose ⌦ “ t1, 2, 3, 4, 5, 6, 7, 8, 9u with positive integers. Then our

blocks have size 3 with the property that any pair lies in only one block. Notice that, the

number of blocks from Theorem III.1.3 is
`9
2

˘
{
`3
2

˘
“ 12, and the blocks are t1, 2, 3u, t4, 5, 6u,

t7, 8, 9u, t1, 4, 7u, t2, 5, 8u, t3, 6, 9u, t1, 5, 9u, t2, 6, 7u, t3, 4, 8u, t2, 4, 9u, t3, 5, 7u and t1, 6, 8u.

Example III.1.6. In a Steiner system Sp3, 4, 8q, the base set is ⌦ which has eight elements

and for convenience suppose ⌦ “ tA,B,C,D,E, F,G,Hu. Then our blocks have size 4 with

property that any 3-element lies in only one block. Notice that, the number of blocks from

Theorem III.1.3 is
`8
3

˘
{
`4
3

˘
“ 14, and the blocks are tA,B,C,Hu, tA,D,E,Hu, tA,F,G,Hu,

tB,D,F,Hu, B,E,G,H, tC,D,G,Hu, tC,E, F,Hu, tD,E, F,Gu, tB,C, F,Gu, tB,C,D,Eu,
tA,C,E,Gu, tA,C,D, F u, tA,B,D,Gu and tA,B,E, F u.

Corollary III.1.7. The Sp2, 3, 7q exists. This is clear from Theorem III.1.2 and existence

of Sp3, 4, 8q.

Remark III.1.8. It is not necessary there is a Steiner system for any three integers num-

bers as an example Sp2, 3, 8q is not a Steiner system since
`3
2

˘
does not divide

`8
2

˘
which

contradiction with Theorem III.1.3.

III.2 Steiner system Sp5, 8, 24q

Definition III.2.1. A Steiner system Sp5, 8, 24q is a set of all sets of size 8, which are subsets

of a set of size 24 elements, say ⌦ with property that any subset of size 5 of ⌦ appears in

only one of the 8-element sets which are called octads, i.e.

Sp5, 8, 24q “ tB Ñ ⌦ : @X Ñ ⌦ D!B | X Ñ B, |B| “ 8 and |X| “ 5u.



6 III.2. Steiner system Sp5, 8, 24q

Theorem III.2.2. [Cur, Theorem A] A Steiner system Sp5, 8, 24q exists.

The first claim is that the power-set of 24-element set is a vector space with 24

dimensions over GF p2q and the addition operation is defined by symmetric di↵erence

in Pp⌦q.

Proof. Suppose ⌦ “ ta1, a2, a3, a4, . . . , a24u, and V is a vector space with 24 dimen-

sions over GF p2q, which has a standard basis tp1, 0, 0, . . . , 0, 0q, . . . , p0, 0, 0, . . . , 0, 1qu.

Moreover, the operation is symmetric di↵erence. Let define the map

� : Pp⌦q Ñ V, by

Y fiÑ pi1, . . . , ij, . . . , i24q,

$
’&

’%

ij “ 1 if ai P Y,

ij “ 0 if ai R Y.

We need to show that � is surjective, injective and a group homomorphism, let Y,X

be subsets of ⌦ and pY q� “ pi1, . . . , ij, . . . , i24q “ pXq� “ pk1, . . . , kj, . . . , k24q. This

implies that ij “ kj for all j “ 1, . . . , 24 and ij “ 1 “ kj for some j. Hence, aj P X

and aj P Y , thus, X “ Y. Therefore, � is an injective function. Notice that, since

|V | “ |Pp⌦q| “ 224 and � is an injection, this implies that � is a surjective function.

Now, we need to show that � is a group homomorohism, suppose that X, Y P Pp⌦q

and

X ` Y “ Z “ taj | aj P XzY or aj P Y zXu.

Hence, pX ` Y q� “ pZq� “ pt1, t2, . . . , tj, . . . , t24q, where tj “ 1 if kj ‰ ij and zero

otherwise. This is the sum of

pk1, k2, . . . , kj, . . . , k24q ` pi1, i2, . . . , ij, . . . , i24q “ pXq� ` pY q�.

Moreover, it is easy to see that p�Xq� “ �pXq�, where � P GF p2q “ t0, 1u and

X P Pp⌦q. Thus, Pp⌦q – V . As a result, Pp⌦q is a vector space over GF p2q with

basis pe1, e2, . . . , e24q, where



7 III.2. Steiner system Sp5, 8, 24q

x
ei “ fiÑ p0, 0, . . . , 1, . . . , 0q

ith

ith
,

where i “ 1, 2, 3, . . . , 24.

Example III.2.3. If X “ ta2, a3, a14, a15u “ then

x
x

x
xX “ ta2, a3, a14, a15u “ fiÑ p0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, . . . , 0q.

The second claim is that we need to produce a subspace C of Pp⌦q such that C “

tX P Pp⌦q : |X| • 8u. Moreover, C contains 759 octads and the set that contains

all these is called C8 which is Sp5, 8, 24q. Notice that, if the Steiner system Sp5, 8, 24q

exists, then from Theorem III.1.3 there are
`
24
5

˘
{
`
8
5

˘
“ 759 octads.

Proof. Let ⇤ “

x x
x

x

x

x
xx be a set of 8 element and consider Pp⇤q as a 8-dimensional vector

space over GF p2q as before. Now, suppose that we have any two subspaces of Pp⇤q,

let say P and L which are 3-dimensional, whose members are tetrads, and P
ì

L “ H.

Let assume P and L as following:

0

,
P “ x x

xx

A

, x x

xx

B

, x

x

x

x

C

,
x
x

x
x

D

,
x

x

x

x

E

,
x

x

x
x

F

,
x

x

x
x

G

.

o

,
L “

x
x x

x

a

,
x

x x
x

b

,
x
x

xx

c

,
x

x

x
x

d

, x

x
xx

e

, x

x

x

x

f

,
x

x

x
x

g

.
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As you see from table III.1, pP, ˚q is an abelian group, and it is closed under mul-

tiplication by �, where � P GF p2q “ t0, 1u. Hence, P is a subspace of Pp�q over

GF p2q.

* 0 A B C D E F G

0 0 A B C D E F G

A A 0 C B E D G F

B B C 0 A F G D E

C C B A 0 G F E D

D D E F G 0 A B C

E E D G F A 0 C B

F F G D E B C 0 A

G G F E D C B A 0

Table III.1: Group multiplication of elements in P

Similarly, As you see from table III.2, pL, ˚q is an abelian group, and it is closed under

multiplication by �, where � P GF p2q “ t0, 1u. Hence, L is also a subspace of Pp�q

over GF p2q.

Remark III.2.4. 1. P is called the point-space, and L is called the line-space.

2. Intersection of any two members of P (or L) is a subset of size 2, i.e. if X,Y P P (or

L), then |X ì
Y | “ 2.

3. Any three linearly independent of elements of P (or L) can be its basis. For example,

A,B,D P P are linearly independent, thus, tA,B,Du can be a basis of P .

4. For any member of L, let say t, there is a one-to-one correspondence to a 2-dimensional

vector space, whose members are from P . This means that for any member of L there

are three members of P , which have only two common points with the member of L and



9 III.2. Steiner system Sp5, 8, 24q

* 0 a b c d e f g

0 0 a b c d e f g

a a 0 f e g c b d

b b f 0 g e d a c

c c e g 0 f a d b

d d g e f 0 b c a

e e c d a b 0 g f

f f b a d c g 0 e

g g d c b a f e 0

Table III.2: Group multiplication of elements in L

it has dimension two, because it is generated by any two non-zero elements, whereas

the third element is their addition, see figure III.2.1.

Example III.2.5. Suppose that t0, B,G,Eu Ñ P then it is a 2-dimensional vector space

over GF p2q. This is the correspondence to a, see figure III.2.1. Firstly, we need to check

common points between them

x
x x
x

a

, x x

xx

B

.

x
x x
x

a

,
x

x
x
x

G

.

x
x x
x

a

,
x

x
x

x

E

.

Notice that, there are two common points between a and B, G, E. Movreover, t0, E,B,Gu
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is a vector subspace of C , since it is an abelian group, and it is closed under multiplication

by a scalar. Notice that, each non-zero element B, G, E has order two and its inverse is the

element itself. It is two dimensional since it is generated by any two non-zero members, let

say E and B such that G “ E ` B

x

x
x

x

E

+

x
x
x
x

G

= x x

xx

B

.

x

x
x

x

E

+
x x

xx

B

=

x
x
x
x

G

.

x x

xx

B

+

x
x
x
x

G

+

x

x
x

x

E

=

0

.

Remark III.2.6. 1. If |X ` t| “ 4 then X P t and if |X ` t| “ 2 or 6 then X R t, i.e.

X P t, if |X ì
t| “ 2 and X R t, if |X ì

t| “ 1 or 3. An example

x x
xx

A

+

x
x x
x

a

=

x
x
x
x

xx

A ` a

this implies that A R a.

2. From 1, we notice that any even subset of ⇤ can be expressed uniquely as pX ` tq or

pX 1 ` tq, where X 1 is a subset of ⇤, and X ` X 1 “ ⇤. X 1 is called the complement of

X.

Let consider three copies of ⇤ and define the 12-dimensional space C of Pp⌦q

⇤1 ⇤2 ⇤3 .
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a 7! {0, B,G,E}
B

E

G

, ,b 7! {0, F, C,E}

C

F

E

,c 7! {0, F, A,G}

A

F

G

, , ,d 7! {0, A,B,C}
B

C

A

e 7! {0, C,D,G}

D

C

G

f 7! {0, A,D,E}

D

A

E

g 7! {0, B,D, F}
D

D

F

Figure III.2.1: The correspondence map

Such that trpX or X 1
qpY or Y 1

qpZ or Z 1
qst : X, Y, Z P P, t P L,X ` Y ` Z “ 0u this

set is called C -set, where

`

X or X 1

t

`

Y or Y 1

t

rpX or X 1
qpY or Y 1

qpZ or Z 1
qst “ `

Z or Z 1

t

.

Example III.2.7. Let A,B,C P P, A ` B ` C “ 0 and e P L then
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C

F A

b

A

c A

B
G

G E

D

f e

D
a

B

d

C A , , , ,

F

B

D
g

,

B

g

ef

F

d

D

C

b c

a

A

GE

Figure III.2.2: The one-to-one correspondence

x

x
x x

x

xx
xrA B Cse “ rA ` e,B ` e, C ` es “ .

Investigation the size of members of C -set From tables III.3, III.4 and III.5 we

can obtain C8 from C -set by taking shapes which intersect with p⇤1 ` ⇤2 ` ⇤3q in 8

points.
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Shapes Description Intersection with

⇤1 ⇤2 ⇤3

r0 0 0s0 |0| “ 0 0 0 0

r0 0 0st t ‰ 0 4 4 4

r01 0 0s0 |0| “ 0, 01 “ ⇤, |01| “ 8 8 0 0

r0 01 0s0 |0| “ 0, 01 “ ⇤, |01| “ 8 0 8 0

r0 0 01
s0 |0| “ 0, 01 “ ⇤, |01| “ 8 0 0 8

r01 01 0s0 |0| “ 0, 01 “ ⇤, |01| “ 8 8 8 0

r01 0 01
s0 |0| “ 0, 01 “ ⇤, |01| “ 8 8 0 8

r0 01 01
s0 |0| “ 0, 01 “ ⇤, |01| “ 8 0 8 8

r01 01 01
s0 01 “ ⇤, |01| “ 8 8 8 8

r01 01 01
st 01 “ ⇤, |01| “ 8, t ‰ 0 4 4 4

rX X 0s0 |X| “ 4, |0| “ 0 4 4 0

rX 0 Xs0 |X| “ 4, |0| “ 0 4 0 4

r0 X Xs0 |X| “ 4, |0| “ 0 0 4 4

rX
1
X

1 0s0 X ` X 1 “ ⇤, |X| “ |X 1| “ 4, |0| “ 0 4 4 0

rX
1 0 X

1
s0 X ` X 1 “ ⇤, |X| “ |X 1| “ 4, |0| “ 0 4 0 4

r0 X
1
X

1
s0 X ` X 1 “ ⇤, |X| “ |X 1| “ 4, |0| “ 0 0 4 4

rX X 01
s0 |X| “ 4, 01 “ ⇤, |01| “ 8 4 4 8

rX 01
Xs0 |X| “ 4, 01 “ ⇤, |01| “ 8 4 8 4

r01
X Xs0 |X| “ 4, 01 “ ⇤, |01| “ 8 8 4 4

rX
1
X

1 01
s0 X ` X 1 “ ⇤, |X| “ |X 1| “ 4, 01 “ ⇤, |01| “ 8 4 4 8

rX
1 01

X
1
s0 X ` X 1 “ ⇤, |X| “ |X 1| “ 4, 01 “ ⇤, |01| “ 8 4 8 4

r01
X

1
X

1
s0 X ` X 1 “ ⇤, |X| “ |X 1| “ 4, 01 “ ⇤, |01| “ 8 8 4 4

rX X 0st X P t ‰ 0, |X| “ |X
1
| “ 4 4 4 4

rX 0 Xst X P t ‰ 0, |X| “ |X 1| “ 4 4 4 4

r0 X Xst X P t ‰ 0, |X| “ |X 1| “ 4 4 4 4

rX
1
X

1 0st X P t ‰ 0, X ` X 1 “ ⇤, |X| “ |X 1| “ 4 4 4 4

rX
1 0 X

1
st X P t ‰ 0, X ` X 1 “ ⇤, |X| “ |X 1| “ 4 4 4 4

r0 X
1
X

1
st X P t ‰ 0, X ` X 1 “ ⇤, |X| “ |X 1| “ 4 4 4 4

Table III.3: The size of members of C -set I
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Shapes Description Intersection with

⇤1 ⇤2 ⇤3

rX X
1 0st X P t ‰ 0, X ` X 1 “ ⇤, |X| “ |X 1| “ 4 4 4 4

rX
1
X 0st X P t ‰ 0, X ` X 1 “ ⇤, |X| “ |X 1| “ 4, |0| “ 0 4 4 4

r0 X X
1
st X P t ‰ 0, X ` X 1 “ ⇤, |X| “ |X 1| “ 4, |0| “ 0 4 4 4

r0 X
1
Xst X P t ‰ 0, X ` X 1 “ ⇤, |X| “ |X 1| “ 4, |0| “ 0 4 4 4

rX 0 X
1
st X P t ‰ 0, X ` X 1 “ ⇤, |X| “ |X 1| “ 4, |0| “ 0 4 4 4

rX
1 0 Xst X P t ‰ 0, X ` X 1 “ ⇤, |X| “ |X 1| “ 4, |0| “ 0 4 4 4

rX X 01
st X P t ‰ 0, |X| “ 4, 01 “ ⇤, |01| “ 8 4 4 4

rX 01
Xst X P t ‰ 0, |X| “ 4, 01 “ ⇤, |01| “ 8 4 4 4

r01
X Xst X P t ‰ 0, |X| “ 4, 01 “ ⇤, |01| “ 8 4 4 4

rX
1
X

1 01
st X P t ‰ 0, X ` X 1 “ ⇤, |X| “ |X 1| “ 4, |01| “ 8 4 4 4

r01
X

1
X

1
st X P t ‰ 0, X ` X 1 “ ⇤, |X| “ |X 1| “ 4, |01| “ 8 4 4 4

rX
1 01

X
1
st X P t ‰ 0, X ` X 1 “ ⇤, |X| “ |X 1| “ 4, |01| “ 8 4 4 4

rX X
1 01

st X P t ‰ 0, X ` X 1 “ ⇤, |X| “ |X 1| “ 4, |01| “ 8 4 4 4

rX
1
X 01

st X P t ‰ 0, X ` X 1 “ ⇤, |X| “ |X 1| “ 4, |01| “ 8 4 4 4

r01
X

1
Xst X P t ‰ 0, X ` X 1 “ ⇤, |X| “ |X 1| “ 4, |01| “ 8 4 4 4

rX 01
X

1
st X P t ‰ 0, X ` X 1 “ ⇤, |X| “ |X 1| “ 4, |01| “ 8 4 4 4

rX
1 01

Xst X P t ‰ 0, X ` X 1 “ ⇤, |X| “ |X 1| “ 4, |01| “ 8 4 4 4

rX X 0st X R t ‰ 0, |X| “ 2, |X 1| “ 6, |0| “ 0 2 2 4

rX 0 Xst X R t ‰ 0, |X| “ 2, |X 1| “ 6, |0| “ 0 2 4 2

r0 X Xst X R t ‰ 0, |X| “ 2, |X 1| “ 6, |0| “ 0 4 2 2

rX
1
X

1 0st X R t ‰ 0, X ` X 1 “ ⇤, |X| “ 2, |X 1| “ 6, |0| “ 0 6 6 4

rX
1 0 X

1
st X R t ‰ 0, X ` X 1 “ ⇤, |X| “ 2, |X 1| “ 6 6 4 6

r0 X
1
X

1
st X R t ‰ 0, X ` X 1 “ ⇤, |X| “ 2, |X 1| “ 6 4 6 6

rX X
1 0st X R t ‰ 0, X ` X 1 “ ⇤, |X| “ 2, |X 1| “ 6 2 6 4

rX
1
X 0st X R t ‰ 0, X ` X 1 “ ⇤, |X| “ 2, |X 1| “ 6 6 2 4

r0 X X
1
st X R t ‰ 0, X ` X 1 “ ⇤, |X| “ 2, |X 1| “ 6 4 2 6

r0 X
1
Xst X R t ‰ 0, X ` X 1 “ ⇤, |X| “ 2, |X 1| “ 6 4 6 2

rX 0 X
1
st X R t ‰ 0, X ` X 1 “ ⇤, |X| “ 2, |X 1| “ 6 2 4 6

Table III.4: The size of members of C -set II
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Shapes Description Intersection with

⇤1 ⇤2 ⇤3

rX
1 0 Xst X R t ‰ 0, X ` X 1 “ ⇤, |X| “ 2, |X 1| “ 6 6 4 2

rX X 01
st X R t ‰ 0, |X| “ 2, |X 1| “ 6, |01| “ 8 2 2 4

rX 01
Xst X R t ‰ 0, |X| “ 2, |X 1| “ 6, |01| “ 8 2 4 2

r01
X Xst X R t ‰ 0, |X| “ 2, |X 1| “ 6 4 2 2

rX
1
X

1 01
st X R t ‰ 0, X ` X 1 “ ⇤, |X| “ 2, |X 1| “ 6, |01| “ 8 6 6 4

rX
1 01

X
1
st X R t ‰ 0, X ` X 1 “ ⇤, |X| “ 2, |X 1| “ 6, |01| “ 8 6 4 6

r01
X

1
X

1
st X R t ‰ 0, X ` X 1 “ ⇤, |X| “ 2, |X 1| “ 6, |01| “ 8 4 6 6

rX X
1 01

st X R t ‰ 0, X ` X 1 “ ⇤, |X| “ 2, |X 1| “ 6, |01| “ 8 2 6 4

rX
1
X 01

st X R t ‰ 0, X ` X 1 “ ⇤, |X| “ 2, |X 1| “ 6, |01| “ 8 6 2 4

r01
X X

1
st X R t ‰ 0, X ` X 1 “ ⇤, |X| “ 2, |X 1| “ 6, |01| “ 8 4 2 6

r01
X

1
Xst X R t ‰ 0, X ` X 1 “ ⇤, |X| “ 2, |X 1| “ 6, |01| “ 8 4 6 2

rX 01
X

1
st X R t ‰ 0, X ` X 1 “ ⇤, |X| “ 2, |X 1| “ 6, |01| “ 8 2 4 6

rX
1 01

Xst X R t ‰ 0, X ` X 1 “ ⇤, |X| “ 2, |X 1| “ 6, |01| “ 8 6 4 2

rX Y Zs0 X ` Y ` Z “ 0, |X| “ |Y | “ |Z| “ 4 4 4 4

rX
1
Y

1
Z

1
s0 X ` Y ` Z “ 0, |X 1| “ |Y 1| “ |Z 1| “ 4 4 4 4

rX Y Zst X,Y P t,X ` Y ` Z “ 0, |X| “ |Y | “ |Z| “ 4 4 4 4

rX
1
Y

1
Z

1
st X,Y, Z P t,X ` Y ` Z “ 0, |X| “ |Y | “ |Z| “ 4 4 4 4

rX Y Zst X P t, Y, Z R t,X ` Y ` Z “ 0, |X| “ 4, |Y | “ |Z| “ 2 4 2 2

rX Y
1
Zst X P t, Y, Z R t,X ` Y ` Z “ 0, |X| “ 4, |Y 1| “ 2, |Z| “ 6 4 6 2

rX Y Z
1
st X P t, Y, Z R t,X ` Y ` Z “ 0, |X| “ 4, |Y | “ 2, |Z 1| “ 6 4 2 6

rX Y
1
Z

1
st X P t, Y, Z R t,X ` Y ` Z “ 0, |X| “ 4, |Y 1| “ |Z 1| “ 6 4 6 6

rX
1
Y Zst X P t, Y, Z R t,X ` Y ` Z “ 0, |X 1| “ 4, |Y | “ |Z| “ 2 4 2 2

rX
1
Y

1
Zst X P t, Y, Z R t,X ` Y ` Z “ 0, |X 1| “ 4, |Y 1| “ 6, |Z| “ 2 4 6 2

rX
1
Y Z

1
st X P t, Y, Z R t,X ` Y ` Z “ 0, |X 1| “ 4, |Y | “ 2, |Z 1| “ 6 4 2 6

rX
1
Y

1
Z

1
st X P t, Y, Z R t,X ` Y ` Z “ 0, |X 1| “ 4, |Y 1| “ |Z 1| “ 6 4 6 6

Table III.5: The size of members of C -set III
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Case Shapes The number of Octads

1 r01 0 0s0, r0 01 0s0, r0 0 01s0 1 ˆ 3 “ 3

2 rX X 0s0, rX 0 Xs0, r0 X Xs0, rX 1 X 1 0s0, rX 1 0 X 1s0, r0 X 1 X 1s0 7 ˆ 12 “ 84

2 rX X 1 0s0, rX 0 X 1s0, r0 X X 1s0, rX 1 0 Xs0, rX 1 0 Xs0, r0 X 1 Xs0 7 ˆ 12 “ 84

3 rX X 1 0st, rX 0 X 1st, r0 X X 1st, rX 1 0 Xst, rX 1 0 Xst, r0 X 1 Xst 7 ˆ 4 ˆ 6 “ 168

4 rX Y Zst, rX Z Y st, rX 1 Y Zst, rX 1 Z Y st 7 ˆ 3 ˆ 3 ˆ 2 ˆ 4 “ 504

Table III.6: Count the Octads

Table III.6 shows all possibilities for the octads shape. In particular, the first case shows

all possibilities for ordering 0, 01 and t “ 0, which are three possibilities. The second

case presents all the possibilities of ordering X,X
1
, 0 and t “ 0, which are 12 shapes

times the number of ways of choosing X P P zt0u “ tA,B,C,D,E, F,Gu which is 7.

The third case shows all the possibilities of ordering X,X
1
, 0 and X R t ‰ 0, which are

6 shapes. And from figure III.2.2, we can find out there are four possibilities to choose

t P Lzt0u “ ta, b, c, d, e, f, gu, where X R t, (|X ` t| ‰ 4), so it is 4 ˆ 6 ˆ 7. The fourth

case shows all the possibilities of ordering X,X
1
, Y, Z and X P t ‰ 0, Y R t, Z R t and

X ` Y ` Z “ 0, which are four shapes. Moreover, From figure III.2.2, there are three

possibilities to choose t P Lzt0u “ ta, b, c, d, e, f, gu, where X P t, X P P zt0u. And

there are three choices to choose Y P P zt0, Xu “ tA,B,C,D,E, F,Gu and there are

two choices to choose Z P P zt0, X, Y u “ tA,B,C,D,E, F,Gu. Hence, 7ˆ3ˆ3ˆ2ˆ4.

Therefore, |C8| “ 3`84`168`504 “ 759 octads. Furthermore, it is satisfied that any

5-element lies in only one Octad of C8 Ñ C . (If it is not, then there existsX, Y P C8 such

that |X| “ 8, |Y | “ 8 and |X
ì

Y | “ 5, but this is impossible since that |X ` Y | § 6,

and X ` Y R C which is a contradiction the fact that C is a vector space.) Hence,

Sp5, 8, 24q “ C8, and |Sp5, 8, 24q| “ 759.

Definition III.2.8. If X is an octad which not equal to ⇤1,⇤2 or ⇤3, then |X ì
⇤i| “ 4

for some i “ 1, 2, 3. We called ⇤i a heavy brick for X. In this case |X ìp⇤j ` ⇤kq| “ 4 for

ti, j, ku “ t1, 2, 3u and we called X
ìp⇤j ` ⇤kq a square tetrad.
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Example III.2.9. As you see in ⇤1
1 is A1 ` 0 and in ⇤1

2 is A` 0, whereas ⇤1
3 is empty. Since

|⇤1
1| “ |⇤1

2| “ 4 then either ⇤1
1 or ⇤1

2 is a heavy brick and a square tetrad

xx
⇤1
2⇤1

1 ⇤1
3

x
x

x
x
x

xrA1 A 0s0 “ .

Example III.2.10. As you see in ⇤1
1 is 0

1`a “ ⇤`a “ a1 and |⇤1
1| “ 4, whereas |⇤2`⇤1

3| “ 4.

This implies that ⇤1
1 is the heavy brick and p⇤1

2 ` ⇤1
3q is the square tetrad

⇤1
2⇤1

1 ⇤1
3

x

x

x

x x

x

x
xr01 A1 A1sa “ .

Example III.2.11. As you see in ⇤1
2 is E1 ` b and |⇤1

2| “ 4, whereas |⇤1
1 ` ⇤1

3| “ 4. This

implies that ⇤1
2 is the heavy brick and p⇤1

1 ` ⇤1
3q is the square tetrad

⇤1
2⇤1

1 ⇤1
3

x
x x

x

x
x

xrD E1 Asb “ .

Remark III.2.12. 1. There are 70 possibilities to arrange four points in eight places (so

there are 70 heavy bricks). Suppose that x1, x2, x3 and x4 our four points in the heavy

brick. Then, there are

8

1 2
3 4
5 6
7

x1 fiÑ 8 Choices to put x1 in any of the eight squares.
x2 fiÑ 7 Choices to put x2 in any of the eight squares.
x3 fiÑ 6 Choices to put x3 in any of the eight squares.
x4 fiÑ 5 Choices to put x4 in any of the eight squares.

Figure III.2.3: Arrange four points in eight places

However, x1 “ x2 “ x3 “ x4, hence, the ordering is not important and there are

repeated brick so to avoid this in figure III.2.3 we need to divide by 4!. Therefore,

p8 ˆ 7 ˆ 6 ˆ 5q{4! “ 70 heavy bricks.
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2. All possibilities to arrange four points in 16 places (square tetrad) is 140 bricks, as-

suming the property that the number of points in each columns should be equal to

pmod2q, i.e. 2k – 0, where k P Z. Similarly, for rows.

Shapes of columns There are 4 ` p6 ˆ 6q ` p6 ˆ 6q ` 24 ` p6 ˆ 6q ` 4 “ 140 brick

tetrad, see figure III.2.4.

8

1 2
3 4
5 6
7

1 2 3 4
a
b
c
d

9 10
11 12
13 14
15 16

p4 0 0 0q ˆ 4, with p1 1 1 1q ˆ 1 one point in each row.
p2 2 0 0q ˆ 6, with p2 2 0 0q ˆ 6 shapes of rows.
p2 2 0 0q ˆ 6, with p1 1 1 1q ˆ 6 one point in each row.
p1 1 1 1q ˆ 24, with p1 1 1 1q ˆ 1 one point in each row.
p1 1 1 1q ˆ 6, with p2 2 0 0q ˆ 6 shapes of rows.
p1 1 1 1q ˆ 1, with p4 0 0 0q ˆ 4 shapes of rows.

Figure III.2.4: Shapes of columns

Example III.2.13. Suppose that the shape of columns is p4 0 0 0q and the shape of rows

is p1 1 1 1q, all possibilities to arrange these shapes in 16 places are in figure III.2.5.

x

x

x

x

4 0 0 0
1
1
1
1

,

x

x

x

x

0 4 0 0
1
1
1
1

,

0 0 4 0
1
1
1
1

x

x

x

x

,

0 0 0 4
1
1
1
1

x

x

x

x

.

Figure III.2.5: The shape of columns 4 0 0 0 and rows 1 1 1 1

Definition III.2.14. A picture contains a group of heavy bricks and a group of square bricks.

Moreover, the 35 pictures are obtained from the one-to-one correspondence that is from 70

heavy bricks that are divided into two groups, (saying |X| “ |Y | “ 4 in the same group if
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X`Y “ ⇤, see figure III.2.7), to 140 square tetrads that are divided into four groups, (saying

|U | “ |V | “ |W | “ |Q| “ 4 in the same group if U ` V ` W ` Q “ ⇤ ` ⇤, see figure III.2.7).

Example III.2.15. Figure III.2.6 is the picture (1) in MOG, see figure III.3.1. This picture

consists of a correspondent group of heavy bricks to a group of square bricks.

x x

x
x

X

fiÑ

x

x

x

x

U

,
x

x

x

x

V

.

x

x

x

x

Y

fiÑ

x

x

x

x

W

,
x

x

x

x

Q

.

Figure III.2.6: Picture (1)

where

x x

x
x

X

`
x

x

x

x

Y

“

x x
x

x

x

x
xx

⇤

.

x

x

x

x

U

+
x

x

x

x

V

+
x

x

x

x

W

+

x

x

x

x

Q

=

x

x x

x x

x x

x

xx

x x

xx

xx

⇤ ` ⇤

.

Figure III.2.7: The picture
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III.3 The Miracle Octad Generator (MOG)

Definition III.3.1. The Miracle Octad Generator (MOG) is 36 pictures which are one

of them shows named of points, whereas 35 pictures contain pair of brick tetrads and the

corresponding group of square bricks. Moreover, taking any one of the pair together with

any one of square bricks in the same group is an octad.

Remark III.3.2. 1. There are all the symmetries bodily permuting of ⇤1,⇤2,⇤3 in

MOG figure, see figure III.3.1.

2. The heavy brick in these picture is in ⇤1. The square tetrad is in ⇤2 ` ⇤3.

3. We obtain an octad by taking either of the brick tetrads together with any one of the

square tetrads from the same picture.

4. red and blue present two di↵erent heavy bricks, and in the same picture, red square,

blue square, purple circle and green circle present four di↵erent square tetrads.

Example III.3.3. [Cur] To find the octad that contains points 22, 1, 12, 6, 8 in MOG, we

need to do

Step 1: We should assign the points in ⇤1,⇤2,⇤3 by using picture (7) in MOG, see figure

III.3.1

x

⇤1

,

⇤2

,
x
x
x
x

⇤3

.

Step 2: Finding the heavy brick which here is ⇤3 (since |⇤3| “ 4) and it is in picture (31) in

MOG, see figure III.3.1

x
x
x
x

⇤3

.
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⌅⇤
⇤
⌅
⇤
⇤
⌅⌅

⌅⇤ ⌅⇤
• � • �
⇤⌅ ⇤⌅
� • � •

,

(26)

⌅⇤
⌅
⌅
⌅
⇤

⇤⌅

⌅⇤ ⇤⌅
• � � •
⇤⌅ ⌅⇤
� • • �

,

(27)

⌅⌅
⇤
⌅
⇤
⌅
⇤⇤

⌅⌅ • •
⇤⇤ � �
⌅⌅ • •
⇤⇤ � �

,

(28)

⌅⌅
⌅
⇤
⇤
⇤
⌅⇤

⌅⇤ ⌅⇤
• � • �
⌅⇤ ⌅⇤
• � • �

,

(29)

⌅⌅
⇤
⇤
⌅
⇤
⇤⌅

⌅⇤ ⇤⌅
• � � •
⌅⇤ ⇤⌅
• � � •

,

(30)

⌅⇤
⌅
⌅
⇤
⇤
⌅⇤

⌅⌅ ⇤⇤
• • � �
� � • •
⇤⇤ ⌅⌅

,

(31)

⌅⇤
⌅
⇤
⌅
⇤
⇤⌅

⌅⇤ ⌅⇤
• � • �
� • � •
⇤⌅ ⇤⌅

,

(32)

⌅⇤
⇤
⌅
⇤
⌅
⇤⌅

⌅⇤ ⇤⌅
• � � •
� • • �
⇤⌅ ⌅⇤

,

(33)

⌅⌅
⇤
⇤
⇤
⇤
⌅⌅

⌅⌅ • •
⇤⇤ � �
⇤⇤ � �
⌅⌅ • •

,

(34)

⌅⌅
⇤
⌅
⌅
⇤
⇤⇤

⌅⇤ ⌅⇤
• � • �
• � • �
⌅⇤ ⌅⇤

,

(35)

⌅⌅
⌅
⇤
⇤
⌅
⇤⇤

⌅⇤ ⇤⌅
• � � •
• � � •
⌅⇤ ⇤⌅

,

(36)

Figure III.3.1: The Miracle Octad Generator (MOG)
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Step 3: Looking for square tetrad that contains (point 8), but in picture (31) there are four

square tetrads

x x

xx

,

(I)

x x

x x
,

(II)

x x
x x

,

(III)

x x
x x

(IV)

.

Hence, 8 is in ⇤1 this implies that (III) is the square tetrad which contains p22, 1, 12, 6, 8q
and then the octad is

x x
x x

x
x
x
x

=(0,8,16,7,22,1,12,6).

Example III.3.4. [Cur] To find the octad that contains points 0, 15, 18,5, 6 in MOG, we

need to do

Step 1: We should assign the points in ⇤1,⇤2,⇤3 by using picture (7) in MOG, see figure

III.3.1

x

xx

⇤1

,

⇤2

,
x
x

⇤3

.

Step 2: Finding the heavy brick which is ⇤1 (since |⇤1| “ 3) and it is in one of these pictures

(6), (8), (28) or (35) in MOG, see figure III.3.1. However, ⇤3 should contain (points

5 and 6). Therefore, the heavy brick should be

x
x

xx

⇤3

.

Step 3: Looking for square tetrad that contains (points 5 and 6), but in picture (6) there are

four square tetrads
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x
x

x
x

,

(I)

x
x

x
x

,

(II)

x
x

x
x

,

(III)

x
x

x
x

(IV)

.

Since (points 5 and 6) are in ⇤3 this implies that (I) is the square tetrad which contains

p5, 6, 12, 4, 17q and then the octad is

x
x

x x

x
x

x
x

=(0,15,14,18,17,4,5,6).

Example III.3.5. [Cur] To find the octad that contains points 0, 14, 2, 22, 21 in MOG, we

need to do

Step 1: We should assign the points in ⇤1,⇤2,⇤3 by using picture (7) in MOG, see figure

III.3.1

x
x

⇤1

,

⇤2

,
x
x
x
x

⇤3

.

Step 2: Finding the heavy brick which is either ⇤1 or ⇤3, since |⇤1| “ 2 “ |⇤3|. If ⇤3 is the

heavy brick, then it is in one of these pictures (2, 3, 5, 12, 14, 16, 19, 21, 23, 25, 26,

30, 33 and 34). However, all the corresponding square tetrads in these pictures do not

contain (points 14, 0 and 2) in any of their square tetrads. Therefore, ⇤1 must be the

heavy brick which is in pictures (5, 6, 9, 10, 12, 13, 14, 16, 17, 19, 22, 26, 29, 30 and

36). Since square tetrad must contain (points 2, 22 and 21). This implies that the

picture must be (36). Hence, the heavy brick is

x
x

⇤1

.

Notice that, the square tetrad is
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xx

x x

.

Hence, the octad is

xx

xx

x
x
x

x

“ p8, 0, 14, 20, 11, 22, 2, 21q.

Corollary III.3.6. Steiner systems Sp4, 7, 23q and Sp3, 6, 22q exist.

Proof. Indeed, we can obtain Sp4, 7, 23q from Theorem III.1.2 and existence of Sp5, 8, 24q.

Moreover, the number of blocks from Theorem III.1.3 is
`
23
4

˘
{
`
7
4

˘
“ 253 blocks. Sim-

ilarly, Sp3, 6, 22q can be obtained from Corollary III.1.4 and existence of Sp5, 8, 24q.

The number of blocks from Theorem III.1.3 is
`
22
3

˘
{
`
6
3

˘
“ 77 blocks. In general, let

S8 “ ta1, a2, a3, a4, a5, a6, a7, a8u be an octad and Sj “ ta1, a2, a3, . . . , aju, where j § 7.

Figure III.3.2 shows the number of octads intersecting Si in Sj, where pj ` 1q is the

entry and pi` 1q is the line. As an example, let ↵, � P ⌦ then there are 253´ 77 “ 176

octads that contain ↵ not �.

759

52 28

21
77

1

30

220

12 4
130 16 5

56

78
40

506
330

253
176

80
120

0416 0 1
0

00 0
161630 0 1

146 432 20 08
44

Figure III.3.2: The Leech triangle

Remark III.3.7. 1. The ninth line in figure III.3.2 shows that any two octads intersect

in 0, 2, 4 or 8 points.
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2. There is another way to count how many octads contain i points which is
`24´i
5´i

˘
{
`8´i
5´i

˘
,

where 0 § i § 4. Moreover, it is 1, where i • 5.

Lemma III.3.8. [Cur, Lemma 1] If S, T P C8 and |S ì
T | “ 4, then S ` T P C8.

Proof. Let S “ ta1, a2, . . . , a8u, T “ ta1, a2, a3, a4, b5, b6, b7, b8u be two octads and sup-

pose T`S R C8. Considering another octad, let sayW which contains pa5, a6, a7, a8, b5q.

From Remark III.3.7 there are no two octads which intersect in one point. Therefore,

W contains a further point of T and not a’s since then |S
ì

W | • 5, so, let say b6.

Similarly, with W1 that contains pa5, a6, a7, a8, b7q, let say b8. However, considering the

octad W2 that contains pa5, a6, a7, b5, b7q implies that W2 must contain a further point

of S. If a8 P W2 then |W1

ì
W2| • 5, let say a1, but then W2 must contain another

point of T. If a’s is added then |S
ì

W2| • 5, and if b8 is added then |W1

ì
W2| • 5.

Moreover, if b6 is added then |T
ì

W2| • 5. In each case we reach to a contradiction,

hence T ` S P C8.

Definition III.3.9. Let Y “ Y1 Ÿ Y2 ¨ ¨ ¨ Ÿ Ys be a decomposition of Y into disjoint sets Yi,

and X is a subset of Y . If |Yi
ì

X| “ ri points, 1 § i § s then X cuts this decomposition as

r1.r2. ¨ ¨ ¨ .rs, where |X| “ r1 ` r2 ` ¨ ¨ ¨ ` rs.

Corollary III.3.10. [Cur] There is a partition of the twenty-four points into six tetrads,

which is an correspondence to each four-point of ⌦, let say Yi, i “ 1, . . . , 6 then ⌦ “ Y1 Ÿ
Y2 Ÿ Y3 Ÿ Y4 Ÿ Y5 Ÿ Y6, where |Yi| “ 4, |Yi ` Yj | “ 8, i ‰ j and i, j “ 1, . . . , 6. Moreover,

Y1, Y2, Y3, Y4, Y5, Y6 is called a sextet.

Lemma III.3.11. [Cur, Lemma 2] An octad cuts the six tetrads of a sextet 42 ¨ 04, 3 ¨ 15 or

24 ¨ 02.

Proof. Let Y be a set of 24 points, X Ñ Y ,|X| “ 8, and Y “ Y1 ŸY2 ŸY3 ŸY4 ŸY5 ŸY6.

There are three cases,
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Case 1. If |Yi

ì
X| “ 1 point, where i “ 1, . . . , 6 and |X| “ 8, then there are two

points left, if the two points in the same Yi, let say Y1 then |Y1

ì
X| “ 3. Since

|pYi ` Yjq
ì

X| “ 2 or 4, where i ‰ j and i, j “ 1, . . . , 6. Hence, X cuts Yi

as 3.1.1.1.1.1, whereas, if the two points in di↵erent Yi, let say Y1 and Y2 then

|pY1 ` Y3q
ì

X| “ 3 which is a contradiction with Lemma III.3.11.

Case 2. If |Yi

ì
X| “ 2 points, where i “ 1, . . . , 6 and |X| “ 8 then there are only

four Yi, let say Y1, Y2, Y3 and Y4 which intersect with X in two points. Hence,

|pYi ` Yjq
ì

X| “ 0, 2 or 4, where i ‰ j and i, j “ 1, . . . , 6. Hence, X cuts Yi as

2.2.2.2.0.0.

Case 3. If |Yi

ì
X| “ 4 points, where i “ 1, . . . , 6 and |X| “ 8 then there are only two Yi,

let say Y1 and Y2 which intersect with X in four points. Hence, |pYi `Yjq
ì

X| “

0, 4 or 8, where i ‰ j and i, j “ 1, . . . , 6. Hence, X cuts Yi as 4.4.0.0.0.0.

Lemma III.3.12. [Cur, Lemma 3] The intersection matrix for the tetrads of two sextets is

one of the following:

(I)

»

————————————–

4 0 0 0 0 0

0 4 0 0 0 0

0 0 4 0 0 0

0 0 0 4 0 0

0 0 0 0 4 0

0 0 0 0 0 4

fi

������������fl

, (II)

»

————————————–

2 2 0 0 0 0

2 2 0 0 0 0

0 0 2 2 0 0

0 0 2 2 0 0

0 0 0 0 2 2

0 0 0 0 2 2

fi

������������fl

,

(III)

»

————————————–

2 0 0 0 1 1

0 2 0 0 1 1

0 0 2 0 1 1

0 0 0 2 1 1

1 1 1 1 0 0

1 1 1 1 0 0

fi

������������fl

, (IV)

»

————————————–

3 1 0 0 0 0

1 3 0 0 0 0

0 0 1 1 1 1

0 0 1 1 1 1

0 0 1 1 1 1

0 0 1 1 1 1

fi

������������fl

.



27 III.3. The Miracle Octad Generator (MOG)

Proof. Let Y1, Y2, Y3, Y4, Y5, Y6 and Z1, Z2, Z3, Z4, Z5, Z6 be the two sextets. Suppose

that Yi`Yj is an octads and Zk is a sextet, where i ‰ j, i, j “ 1, . . . , 6 and k “ 1, . . . , 6.

By using Lemma III.3.11 we get these matrices, where the entry in ith row and j
th

column is the intersection of Yi and Zj.

Example III.3.13.

Z1 Z2 Z3 Z4 Z5 Z6¨

˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

˛

‹‹‹‹‹‹‹‹‹‹‹‹‚

Y1 3 1 0 0 0 0

Y2 1 3 0 0 0 0

Y3 0 0 1 1 1 1

Y4 0 0 1 1 1 1

Y5 0 0 1 1 1 1

Y6 0 0 1 1 1 1

.

Let Y1 ` Y2 be an octad then it cuts Z1 Ÿ Z2 Ÿ Z3 Ÿ Z4 Ÿ Z5 Ÿ Z6 as 4.4.0.0.0.0. Suppose

that Y1 ` Y6 is an octad then it cuts Z1 Ÿ Z2 Ÿ Z3 Ÿ Z4 Ÿ Z5 Ÿ Z6 as 3.1.1.1.1.1.

Theorem III.3.14. [Cur, Theorem B] The Steiner system Sp5, 8, 24q is unique.

Proof. Suppose that ⌦ “ t8, 0, 1, . . . , 22u and O1 Ñ ⌦ is an octad such that x1, x2, x3,

x4, x5, x6 in O1 and x7 P ⌦zO1. Notice that, we can write O1 ` ⌦ in 4 ˆ 6 array where

the first two columns are O1

x3

x7

x4

x1

x2 x6

x5

.

Assuming that S8 is a sextet such that it defines by the tetrad Yx “ tx1, x2, x3, x4u.

Then by rearranging the un-named 17 points we get this

x
x

x
x

0
0

0
0

1
1

1
1

2
2

2
2

3
3

3
3

4
4

4
4

.S8 “
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Notice that, S8 “ Yx Ÿ Y0 Ÿ Y1 Ÿ Y2 Ÿ Y3 Ÿ Y4, which means that S8 is a sextet.

Moreover, O1 cuts S8 as 4.4.0.0.0.0. Notice that, considering the octad, let say O2

such that x2, x3, x4, x5, x6, x7 P O2. Then O2 cuts S8 as 3.1.1.1.1.1 and

x
x

x
x

0
0

0
0

1 1 1 1
2 2 22

3 3 33
4 4 4 4

is a sextet.S0 “

Notice that, from figure III.3.2 the number of disjoint octads from O1 is 30 octads.

If we consider the octad, let say O3 such that x1, x3, x4, x5, x7 P O3. Then O3 cuts

both S8 and S0 as 3.1.1.1.1.1, where |O3

ì
Yx| “ 3 points and |O3

ì
Y1| “ |O3

ì
Y2| “

|O3

ì
Y3| “ |O3

ì
Y4| “ 1 point. This implies that

xx

x
x
0 0

0
0

1
1

1
1

2
2

2
23

3
3

3
4

4

4
4

is a sextet.S1 “

Notice that, the group of permutations that preserve the sextets S8, S0 and S1 is given

by

‚ ‚

‚ ‚

‚ ‚

‚

‚

‚

‚
c1
c2
c3

a1
b1
e1
d1

a2
d2
b2
e2

a3
e3

d3
b3

,⇡ “

‚ ‚

‚ ‚

‚ ‚

‚

‚

‚

‚‚
‚ ‚ ,↵ “

‚ ‚

‚

‚ ‚
‚

‚

‚‚
‚ ‚

‚‚
‚

‚

‚

‚ ‚

‚ ‚

‚ ‚

‚

‚

‚
,⇢ “

where dots denote fixed points and ⇡ is a 3-element taking

x1 fiÑ x2 fiÑ x3 fiÑ x4 fiÑ x1,

where xi P tai, bi, ci, di, eiu. Let O4 be an octad such that x1, x2, x5, x6, x7 P O4. Then

O4 cuts S8 as 2.2.2.2.0.0. Let assume that O4 cuts the first four columns of S8 by

using ⇡ it is as 2.2.2.2. Also, O4 cuts S0 as 2.2.2.2.0.0. Thus, we got the top two points

of the fourth columns

x x
x x

x
x x
x

.
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Thus,

xx
x x

0
0
0

0

1
1
1

1

3
3
3

3

2
2

2
2

4
44
4

is a sextet.S2 “

Notice that, O4 “ Yx Ÿ Y1. Let O5 contain x1, x2, x3, x5, x7 such that O5 ‰ O4, O3, O2

or O1 and O5 cuts S8, S0 and S1 as 3.1.1.1.1.1. Therefore, O5 must be

x

x
x

x

x
x

x

x

or x
x

x
x

x
x

x

x

.

Figure III.3.3: An octad

By using the permutation ↵ these are equivalent. Let assume that

xx
x

x

0

0

0
0

1

1

1

1
2

2
2

23

3

3

3

4

4

4

4

is a sextet.S3 “

Notice that, from figure III.3.3

xx
x

x

0

0 0
0

1

1
1

1

2

2

2

23
3

3
3

4

4
4

4

is a sextet.S4 “

Let consider the octad that contains these points

x

x

x

x

x

.

It must have further points in the second column and two points in one of the last

three columns, but since it cuts S8, S0 and S1 as 2.2.2.2.0.0, we get
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x x

x x

x

x

x

.

For the one point further that is in the second column we might have one of the

following

x x

x x

x
x

x

x

,

(I)

x x

x x

x

x x

x

,

(II)

x x

x x

x

x
x

x

.

(III)

The first case (I) fails to cut S2. (Because it cuts as 3.1.2.2.0.0 which is a contradiction

with Lemma III.3.11, wheras (II) and (III) are equivalent under ⇢, so we might take

(II) as our octad

x x

x x

x

x x

x

.

Thus,

xx

x x
0 0

0 0

11

11

2

22

2

3

3 3

3
44

4 4
is a sextet.S5 “

Now, we get S8, S0, S1,S2, S3, S4, S5 and to obtain the 28 sextets remaining, we need

the following Lemma.

Lemma III.3.15. [Cur, Lemma 4] If every octad intersecting a given octad O in four points

is known, then all octads follow by symmetric di↵erencing.

Proof. Let O be the given octad and x, y, z P O, which are distinct points. From

figure III.3.2 there are 21 octads containing x, y, z. However, from Remark III.3.7

and Lemma III.3.8 any two octads intersect in 0, 2, 4 or 8 points. Therefore, the
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intersection must be in four points so their symmetric di↵erence is an octad disjoint

from x, y, z. Notice that, there are
`
21
2

˘
“ 210 pairs, which are disjoint from x, y, z in

21 octads. Since suppose that Ui is an octad such that x, y, z P Ui, where i “ 1, 2, 3, 4.

If U1 ` U2 “ U3 ` U4 then U3 or U4 must contain further two points from U1ztx, y, zu,

let say U3. Thus, |U1

ì
U3| “ 5, U1 “ U3 and this implies that U2 “ U4. Therefore, all

210 pairs are unique.

Using figure III.3.2 again the third line consists of all the disjoint octads from x, y, z.

Hence, we know every octad that is disjoint from O by three points.

Corollary III.3.16. The set of all permutations of 24-element, ⌦ that preserve Sp5, 8, 24q,
and it has form quintuply transitive is a subgroup of symmetric group of 24-element, S24.

Moreover it has order 244, 823, 040.

Proof. Notice that, the set of all the permutations is a group and it is sharply transitive

on sets which contain 7 points, let say x1, x2, x3, x4, x5, x6, x7, where x1, x2, x3, x4, x5, x6

in the same octad O, whereas x7 P ⌦zt0u. There are 24 ways of choosing x1 from ⌦, 23

choices for choosing x2 and there are 22, 21, 20 choices for x3, x4, x5, respectively. Notice

that, x6 P O and |O| “ 8. Hence, there are three choices for x6. Finally, there are 16

choices for choosing x7 P ⌦zO. Therefore, 24ˆ23ˆ22ˆ21ˆ20ˆ3ˆ16 “ 244, 823, 040.

Definition III.3.17. The 5-transitive group preserving C8 is called M24 “ t� P S24 | O� P
C8, for all O P C8u. Moreover, subgroups of M24 are M24k, where pk † 5q which are fixed

k-points.

Remark III.3.18. The points of ⌦ are 8, 0, 1, 2, . . . , 22 and they number as the project line.

Suppose that � P M24 and op�q “ 23, (notice that |M24|{23) such that � : i fiÑ i ` 1 (mod

23) and it fixes 8, i.e. � “ p8qp0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22q.
Let � P ⌦ such that � : i fiÑ ´1

i . This implies that � “ p0 8qp1 22q p2 11qp3 15q p4 17q
p5 9q p6 19qp7 13q p8 20qp10 16q p12 21qp14 18q. Thus, � P M24 since pSiq�, where i “
8, 0, 1, 2, 3, 4, 5 is a sextet.
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