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INTRODUCTION

In February 1981, a historic achievement was made by several hundred international

mathematicians over a period of thirty years which was completing the classification of

finite simple groups. The most interesting of the finite simple groups are the twenty-six

sporadic groups. The sporadic groups acquired their name as they do not belong to any

infinite family of finite simple groups. The first family of these are the Mathieu groups

which consist of M11, M12, M22, M23 and M24 (see section I.6); which are permutation

groups on 11, 12, 22, 23 and 24 points, respectively, and they were discovered by Emile

Mathieu in 1861 [Gal]. The second family are the Conway groups which are Co1, Co2

and Co3 (see section II.2 and II.2.2), they may be considered as automorphism groups

of the Leech lattice. They were discovered by John Horton Conway around 1968 [Wil].

Despite the fact that before then the Higman-Sims group HS was discovered by D. G.

Higman, C. C. Sims (see section II.1.5) and the McLaughlin group McL was discovered

by J. McLaughlin (see section II.1.6), they are contained in both Co2 and Co3 [Wil].

Meanwhile, the Suzuki group Suz (see section II.2.4) was discovered by Suzuki and

the Hall-Janko group J2 “ HJ (see section II.2.3) was discovered by Hall-Janko which

may be considered as subgroups of the first Conway group. Although the rest of the

twenty-six sporadic groups are not discussed in this dissertation, we introduce them

briefly. A century after finding Mathieu’s group, in 1966 Zvonimir Janko found the

first Janko group J1 which has only 175560 elements [Gal]. During the following decade

a further twenty sporadic groups were discovered, see table II.20. In 1974, the largest

group of the sporadic groups, the Monster group M or (F1 Fischer-Griess group) was

1



2 List of finite group notations

discovered by Fischer [Gal]. Moerover, in 1980, Griess constructed this group as an

automorphism group of 196884 dimensional algebra that has remarkable commutative

but non-associative elements [Boy] and the order of M was computed by Thompson

[Gal] which is

|M| “ 246 ¨ 320 ¨ 59 ¨ 76 ¨ 112 ¨ 133 ¨ 17 ¨ 19 ¨ 23 ¨ 29 ¨ 31 ¨ 41 ¨ 47 ¨ 59 ¨ 71 « 8.08 ¨ 1054.

Moreover, the sporadic groups may be divided into three levels. The first level consists

of the five Mathieu groups which are

M11,M12,M22,M23 and M24.

The second level considers as the seven groups related to the Leech lattice

Co1, Co2, Co3, HS,McL, J2 and Suz.

The third level is that the Monster group and the seven subgroups that are related to

the Monster group which are

M,B, F i24, F i23, F i22, HN, Th and He.

Finally, the Pariah groups which are

Ru,ON,Ly, J4, J1 and J1.

They are not related to any of the known simple groups except possibly two, McL

and M24 [Boy], see figure II.2.1. In this dissertation, we start with general background

from group theory and the previous research, followed by presenting the Leech lattice

construction on twenty-four dimensions. Then we discuss the three Conway groups

together with the Higman-Sims group, the McLaughlin group, the Hall-Janko group

and the Suzuki group. To conclude our dissertation we classify all the twenty-six

sporadic groups in figure II.2.1 and their orders in table II.20.

The main four sources for this dissertation are (Sphere Packings, Lattices and groups

by J. H. Conway and N. J. A. Sloane, [CoSl]), (The Finite Simple Groups by Robert



3 List of finite group notations

A. Wilson, [Wil]), (Finite Simple Groups: Thirty Years of the Atlas and Beyond by M.

Bhargava, R. Guralnick, G. Hiss, K. Lux and P. H. Tiep, [BGHLH]) and (A group of

order 8,315,553,613,086,720,000 by J. H. Conway, [Con1]).



§ I PRELIMINARIES

I.1 Background from general group theory

Definition I.1.1. Let v and u be in Rn then the scalar product of v and u is defined by

v ¨ u “

nÿ

i“1

xiyi.

Definition I.1.2. A basis tv1, v2, . . . , vnu of Rn is called orthonormal if

1. vi ¨ vj “ 0, whenever i ‰ j, that is vectors are mutually orthogonal, and

2. vi ¨ vi “ 1 for all i, where 1 § i § n.

Definition I.1.3. A rational orthogonal matrix is a square matrix with rational entries whose

columns and rows are orthogonal unit vectors, that is orthonormal vectors.

Definition I.1.4. A group pG, ˚q is a set G with a binary operation

˚ : G ˆ G Ñ G;

satisfying the following conditions:

1. For all g1, g2 and g3 in G;

pg1 ˚ g2q ˚ g3 “ g1 ˚ pg2 ˚ g3q.

2. There exists an identity element 1 in G such that

g ˚ 1 “ 1 ˚ g “ g for all g P G.

4



5 I.1. Background from general group theory

3. For all g P G, there exists an inverse element g´1 is in G such that

g´1
˚ g “ g ˚ g´1

“ 1.

Definition I.1.5. Let S be a finite set then the group of all bijective maps ↵ : S Ñ S, is

called a symmetric group SympSq on S and ↵ is called a permutation. The product of two

permutations is defined as their composite:

↵� “ ↵ ˝ �.

Definition I.1.6. Let G be a group and N a subgroup of G. Then N is a normal subgroup

if Ng
“ N for all g P G.

Definition I.1.7. A non-trivial groupG is called a simple group ifG has no proper non-trivial

normal subgroups.

Theorem I.1.8. Let p be a prime and G be a finite group for which p divides the order of G.

There is an element of G which has order p, consequently, G has a cyclic subgroup of order

p. This is called Cauchys Theorem.

Definition I.1.9. Let G and K be groups. A map ' : G Ñ K is a group homomorphism if

pg1g2q' “ pg1q' pg2q' for all g1, g2 P G.

Definition I.1.10. Let G be a group and V be a vector space. Then we say � is a represen-

tation of group G if

� : G Ñ GLpV q

is a homomorphism, where GLpV q is the general linear group of a vector space V , see defi-

nition I.4.1.

Definition I.1.11. An automorphism group of a group G, denoted by AutpGq, is a set

whose elements are automorphisms of G, and where multiplication is defined as composition

of automorphisms. In other words, it has a subgroup structure that is obtained from SympGq,

the group of all permutations on G

AutpGq “ t� : G Ñ G | � is a bijectionu.



6 I.2. Group actions

I.2 Group actions

Definition I.2.1. An action of a group G on a non-empty set ⌦ is a binary operation

˚ : ⌦ ˆ G Ñ ⌦, where for all ↵ P ⌦ and g1, g2 P G

1. ↵ ˚ 1 “ ↵, and

2. ↵ ˚ pg1g2q “ p↵ ˚ g1q ˚ g2.

Definition I.2.2. Let G be a group acting on a non-empty set ⌦ and ↵ be in ⌦, then

1. The set ↵G = t↵g | g P Gu Ñ ⌦ is called the orbit of ↵ under G.

2. The set G↵ “ tg P G | ↵g “ ↵u is called the stabiliser of ↵.

3. We say G acts transitively on ⌦ if G has only one orbit. That is ↵G = ⌦ for some

↵ P ⌦.

Definition I.2.3. A group G acts k-transitively precisely if for any two sequences of k distinct

points from ⌦, let say p↵1,↵2, . . . ,↵kq and p�1,�2, . . . ,�kq there is a group element g in G,

where we have ↵ig “ �i for each i, where 1 § i § k.

Definition I.2.4. Let G be k-transitive, for which k non repeating elements ↵1,↵2, . . . ,↵k

in ⌦, g1 and g2 in G such that ↵ig1 “ ↵ig2 for all i “ 1, . . . , k and g1 “ g2, then G is called

sharply k-transitive on ⌦.

Theorem I.2.5. [Orbit-Stabiliser Theorem] Let G be a group, ⌦ be a non-empty set and

G ˆ ⌦ Ñ ⌦ be a group action. Then for any ↵ in ⌦, we have

|G| “ |↵G
| ¨ |G↵|.

Theorem I.2.6. Let ⌦ be a non-empty set, then G acts transitively on ⌦ if and only if for

any two elements ↵ and � in ⌦, there exists g in G such that � “ ↵g.

Definition I.2.7. Let G be a transitive group acting on a non-empty set ⌦. A non-trivial

subset � of ⌦ is a block of G if for all g P G, we have

p�qg X � “ H or �.
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� is called a trivial block if � “ t↵u or � “ ⌦, where ↵ P ⌦.

Moreover, if G has non-trivial blocks then G is called an imprimitive group, but if G has only

the trivial blocks then G is called a primitive group.

Theorem I.2.8. Let G act transitively on a non-empty set ⌦ and let H be the stabiliser of

↵ in ⌦. Then G acts primitively on ⌦ if and only if H is a maximal subgroup of G.

Theorem I.2.9. Every doubly transitive group is a primitive group.

Theorem I.2.10. Let G be a finite group which acts transitively on a non-empty set ⌦, and

H be a normal subgroup of G, then the orbits of the induced action of H on ⌦ all have the

same size.

Lemma I.2.11. Let G be a finite perfect group which acts primitively on a non-empty set

⌦, and the stabiliser H has a normal abelian subgroup say K, whose conjugates generate G,

then G is a simple group. This is called Iwasawa’s Lemma.

I.3 Sylow groups

Definition I.3.1. Let G be a group, and let p be a prime number.

1. A group of order pk for some k • 1 is called a p-group. A subgroup of order pk for

some k • 1 is called a p-subgroup.

2. If |G| “ pnm, where p does not divide m, then a subgroup of order pn is called a Sylow

p-subgroup of G.

Corollary I.3.2. Let G be a finite group and p, q are distinct prime divisors of the order of

G. If G has only one Sylow p-subgroup, then this group is a normal subgroup and so G is not

a simple group.

Theorem I.3.3. Let H be a normal subgroup of G, and suppose that P is a Sylow subgroup

of H, then G “ NGpP qH. This is called the Frattini argument.



8 I.4. The general linear group and some of its subgroups

I.4 The general linear group and some of its sub-

groups

Definition I.4.1. The general linear group is the group of all linear automorphisms of an

n-dimensional vector space V over the finite field GF pqq of q elements, where q “ pn, p is

a prime. If it consists of n ˆ n invertible matrices with entries from GF pqq, then typical

notation is GLnpqq, GLpn, qq, or simply GLn if the field is understood. Whereas, if it is the

abstract automorphism group, not necessarily written as matrices, it is written as GLpV q.

Definition I.4.2. The special linear group is the normal subgroup of GLpn, qq consisting of

the automorphisms with a determinant of one, written SLpn, qq or SLnpqq,

SLnpqq “ tA P GLnpqq | detA “ 1u.

Definition I.4.3. The projective linear group PGLpn, qq and the projective special linear

group PSLpn, qq are the quotients of GLpn, qq and SLpn, qq by their centers. For n • 2 the

group PSLnpqq is simple except for PSL2p2q “ S3 and PSL2p3q “ A4. Therefore, we also

call it Lnpqq, in conformity with Artin’s convention in which single letter names are used for

groups that are generally simple, see table I.1.

Definition I.4.4. The conjugate transpose of a matrix A, denoted by A˚, is given by

A˚
“ At,

where the entries of A are the conjugates of the corresponding entries of A.

Definition I.4.5. A square non-singular matrix A is unitary if

A´1
“ A˚.

Definition I.4.6. The general unitary groupGUnpqq is the subgroup of all elements ofGLpq2q

that a given non-singular Hermitian form, i.e.

GUn “ tA P GLnpq2q | A˚A “ Iu.
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Definition I.4.7. The special unitary group SUnpqq is the Lie group of nˆn unitary matrices

with determinant one, i.e.

SUnpqq “ tA P GUnpqq | detA “ 1u.

Definition I.4.8. The projective general unitary group PGUnpqq and projective special uni-

tary group PSUnpqq are the groups obtained from GUnpqq and SUnpqq on factoring these

groups by their centers.

Definition I.4.9. An abelian p-group G is elementary abelian if xp “ 1 for all x in G and it

is denoted by pn or E.

Group Isomorphic to Simple or not Order

PSL2p2q “ L2p2q PSU2p2q “ U2p2q – S3 Not simple 2 ¨ 3

PSL2p3q “ L2p3q PSU2p3q “ U2p3q – A4 Not simple 22 ¨ 3

PSU3p2q 32 : Q8 Simple 23 ¨ 32

PSL2p4q “ L2p4q U2p5q – L2p5q – A5 Simple 22 ¨ 3 ¨ 5

L2p7q U2p7q – L3p2q – A1p7q Simple 23 ¨ 3 ¨ 7

L2p9q A6 – S4p2q
1

– U2p9q Simple 23 ¨ 32 ¨ 5

L4p2q A8 – A3p2q – O`
6 p2q Simple 26 ¨ 32 ¨ 5 ¨ 7

PSU3p5q
2A2p5q Simple 24 ¨ 32 ¨ 53 ¨ 7

PSU4p3q O´
6 p3q –

2 A3p3q Simple 27 ¨ 36 ¨ 5 ¨ 7

L2p11q PSU2p11q – A1p11q – S2p11q – O3p11q Simple 22 ¨ 3 ¨ 5 ¨ 11

L2p23q PSU2p23q – A1p23q – S2p23q – O3p23q Simple 23 ¨ 3 ¨ 11 ¨ 23

PSU6p2q
2A5p2q Simple 215 ¨ 36 ¨ 5 ¨ 7 ¨ 11

Table I.1: Examples of some of subgroups of the general linear group

I.5 The Steiner system and MOG

Definition I.5.1. A Steiner system Spt, k, vq is a set of k-element subsets of a base set which

is a set of v elements, such that any t-element subset of the base set appears in precisely one

of the k-element subsets which are called blocks.
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Theorem I.5.2. If there exists an Spt, k, vq then there exists an Spt ´ 1, k ´ 1, v ´ 1q.

Theorem I.5.3. If there exists an Spt, k, vq. Then
`
k

t

˘
divides

`
v

t

˘
and the number of blocks

is
`
v

t

˘
ä

`
k

t

˘
.

Corollary I.5.4. If there exists an Spt, k, vq then
`
k´i

t´i

˘
divides

`
v´i

t´i

˘
for each i “ 0, 1, 2, . . . ,

t ´ 1.

Definition I.5.5. A Steiner system Sp5, 8, 24q is a set of all sets of size eight, which are

subsets of a set of size twenty-four elements, say ⌦ with the property that any subset of size

five of ⌦ appears in only one of the 8-element sets which are called octads, i.e.

Sp5, 8, 24q “ tB Ñ ⌦ | for all X Ñ ⌦ D!B, X Ñ B and |B| “ 8, where |X| “ 5u.

Theorem I.5.6. A Steiner system Sp5, 8, 24q exists.

Theorem I.5.7. The Steiner system Sp5, 8, 24q is unique.

Definition I.5.8. Let ⌦ be

17 11

4

21

3

8

14

16

19

9
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20

18

0

15

1

.
13

7

210

12

1

22

Definition I.5.9. The twelve dimensional subspace of Pp⌦q over GF p2q is denoted by C ,

C “ tX,Y P Pp⌦q : |X ` Y | • 8u.

Definition I.5.10. The subset of C that contains all octads is denoted by C8 which has

order 759. Moreover, a triplet of mutually disjoint octads is called a trio.

Definition I.5.11. The subset of C that contains all dodecads (umbrals) is denoted by C12,

which has order 2576. A dodecad (umbral) is a subset of ⌦ which has order 12. Moreover, a

complementary pair of umbral dodecads is a duum.

Definition I.5.12. The set that consists of 0, octads, dodecads, sets of 16 elements and ⌦

is called the C -set which has order 4096 “ 1 ` 759 ` 2576 ` 759 ` 1, respectively.
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Figure I.5.1: The Leech triangle

Theorem I.5.13. Let ta1, a2, . . . , a8u be an octad. Then the number of octads intersecting

ta1, . . . , aiu in tal, . . . , aju (exactly) is the pj ` 1q
th entry in the pi ` 1q

th line in figure I.5.1.

Remark I.5.14. The ninth line in figure I.5.1 shows that any two octads intersect in 0, 2, 4

or 8 points.

Definition I.5.15. Let Y “ Y1 Ÿ Y2 ¨ ¨ ¨ Ÿ Ys be a decomposition of Y into disjoint sets Yi

and X is a subset of Y . If |Yi
ì

X| “ ri points, 1 § i § s then X cuts this decomposition as

r1.r2. ¨ ¨ ¨ .rs, where |X| “ r1 ` r2 ` ¨ ¨ ¨ ` rs.

Corollary I.5.16. There is a partition of the twenty-four points into six tetrads, which is an

correspondence to each four-point of ⌦, let say Yi, i “ 1, . . . , 6 then ⌦ “ Y1 Ÿ Y2 Ÿ Y3 Ÿ Y4 Ÿ

Y5 Ÿ Y6, where |Yi| “ 4, |Yi ` Yj | “ 8, i ‰ j and i, j “ 1, . . . , 6. Moreover, Y1, Y2, Y3, Y4, Y5, Y6

is called a sextet.

Lemma I.5.17. An octad cuts the six tetrads of a sextet 42 ¨ 04, 3 ¨ 15 or 24 ¨ 02.

I.5.1 The Miracle Octad Generator (MOG)

The Miracle Octad Generator (MOG) is thirty-six pictures where one of them shows

the name of the points, and the other thirty-five pictures contain pairs of brick tetrads

and the corresponding group of square bricks. Moreover, taking any one of the pair

together with any one of square bricks in the same group is an octad, see figure I.5.2.
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Figure I.5.2: The Miracle Octad Generator (MOG)
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I.6 The Mathieu group M24 and its subgroups

Definition I.6.1. The 5-transitive group preserving C8 is called the Mathieu group M24,

which has order 244, 823, 040, i.e.

M24 “ t� P S24 | O� P C8 for all O P C8u.

Theorem I.6.2. The Mathieu group M24 preserves C .

Definition I.6.3. By fixing any point of ⌦ (let say 8), we obtain the maximal subgroup M23

that can be defined as the stabiliser of the Steiner system Sp4, 7, 23q and it has 253 blocks.

The blocks can be obtained by removing 8 from all the octads of Sp5, 8, 24q that contain it.

Definition I.6.4. By fixing two points of ⌦ (let say 8 and 0), we obtain the Mathieu group

M22, which is not maximal, since we can add to it the permutations which interchange those

points, to get M22 : 2. This is the stabiliser of the Steiner system Sp3, 6, 22q and it has 77

blocks. The blocks can be obtained by removing 8 and 0 from all octads of Sp5, 8, 24q that

contain them both.

Definition I.6.5. The group that is the sharply 5-transitive permutation group on twelve

points and preserves the Steiner system Sp5, 6, 12q is called the Mathieu group M12.

Definition I.6.6. The point stabiliser in M12 that acts sharply 4-transitively on a set of

eleven points, and preserves the Steiner system Sp4, 5, 11q is called the Mathieu group M11.

I.6.1 Maximal subgroups of M24

Table I.2 shows all maximal subgroups of M24 and gives some descriptions. As an

example, the symbol r1, 23s indicates a subgroup ofM24 fixing a point that has one orbit

of size 23. The symbol r2, 22s indicates a subgroup ofM24 that has two orbits of size two

and 22. Whereas, r46s means that the group is transitive, with six imprimitivity sets

of size four. (Notice that, r46s is not the same as r4, 4, 4, 4, 4, 4s.) Again r83s represents

a transitive subgroup of M24, with three imprimitivity sets of size eight. (Notice that

again r83s is not the same as r8, 8, 8s.) r24s means that the group is a transitive on ⌦
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with one orbit of size 24. Finally, monad, dyad and triad, are sets of size one, two and

three respectively.

Name Structure Order Orbit Index

Monad stabiliser M23 27 ¨ 32 ¨ 5 ¨ 7 ¨ 11 ¨ 23 r1, 23s 24

Dyad stabiliser M22.2 28 ¨ 32 ¨ 5 ¨ 7 ¨ 11 r2, 22s 276

Triad stabiliser M21.S3 27 ¨ 33 ¨ 5 ¨ 7 r3, 21s 2024

Sextet stabiliser 26.3S6 210 ¨ 33 ¨ 5 r46s 1771

Octad stabiliser 24.A8 210 ¨ 32 ¨ 5 ¨ 7 r8, 16s 759

Duum stabiliser M12.2 27 ¨ 33 ¨ 5 ¨ 11 r122s 1288

Trio stabiliser 26pS3 ˆ L2p7qq 210 ¨ 32 ¨ 7 r83s 3795

Octern group L2p7q 23 ¨ 3 ¨ 7 r38s 1457280

Projective group L2p23q 23 ¨ 3 ¨ 11 ¨ 23 r24s 40320

Table I.2: Maximal subgroups of M24

Remark I.6.7. The adjoint permutations of ⌦

↵ : x fiÑ x ` 1, � : x fiÑ 2x, � : x fiÑ ´x´1 and � : x fiÑ x3{9 px P Qq or 9x3 px R Qq,

where x is in ⌦ and Q “ t0, 1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18u are generated M24.

I.7 Maximal subgroups of the Mathieu groups

Table I.3 shows all maximal subgroups of the Mathieu groups M23, M22, M12, M11

and gives some descriptions. The left hand column gives the action on the set ⌦, with

semicolons separating the orbits of the Mathieu group under discussion. For example,

the symbol r1; 1; 7, 15s indicates a subgroup of M22 (fixing the two 1’s) that has orbits

of size seven and 15 on the remaining 22 points. In this case there are two conjugacy

classes according to which of the two fixed points completes the orbit of size seven to

an octad. Moreover, the symbol r1; 8, 15s indicates a subgroup of M23 with two orbits

of sizes eight and 15, while r43; 43s means that the group has two orbits, with size three
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imprimitivity sets of size four. The symbol 6 ˆ 2 denotes a set of 12 points with at

the same time six imprimitivity sets of size two and two of size six, so forming a 6 ˆ 2.

The symbol 4 ˆ 3 denotes a set of 12 points with at the same time four imprimitivity

sets of size three and three of size four, so forming a 4 ˆ 3. It is similar for the rest.

M23 M22 M12 M11

r1; 23s 23.11 r1; 1; 1, 21s M21 r12; 12s L2p11q r1; 11; 1, 11s L2p11q

r1; 1, 22s M22 r1; 1; 2, 45s 24.S5 r1, 11; 12s M11 r1; 1, 10; 62s M10

r1; 2, 21s M21.2 r1; 1; 6, 16s 24.A6 r12; 1, 11s M11 r1; 2, 9; 34s M9.2

r1; 3, 45s 24p3 ˆ S5q r1; 1; 7, 15s A7 r2, 10; 62s M10.2 r1; 3, 8; 4, 8s M8.S3

r1; 7, 16s 24.A7 r1; 1; 7, 15s A7 r62; 2, 10s M10.2 r1; 5, 6; 2, 10s S5

r1; 8, 15s A8 r1; 1; 8, 14s 23.L3p2q r3, 9; 34s M9.S3

r1; 11, 12s M11 r1; 1; 11, 11s L2p11q r34; 3, 9s M9.S3

r1; 1; 10, 62s M10 r4, 8; 4, 8s M8.S4

r6 ˆ 2; 6 ˆ 2s 2 ˆ S5

r4 ˆ 3; 4 ˆ 3s A4 ˆ S3

r43; 43s 42.D12

Table I.3: Maximal subgroups of the Mathieu groups



§ II THE LEECH LATTICE

Definition II.0.1. Let R24 be spanned by the orthonormal basis tvi | i P ⌦u then the zero

Leech lattice ⇤0 is defined as a subset of R24 and it is spanned by the vectors 2vC , where C

is in C8.

Remark II.0.2. We use the notations v8 “ p1, 0, 0, 0, 0, . . . , 0q, v0 “ p0, 1, 0, 0, 0, . . . , 0q,

v1 “ p0, 0, 1, 0, 0, . . . , 0q, v2 “ p0, 0, 0, 1, 0, . . . , 0q, . . . , v22 “ p0, 0, 0, 0, 0, . . . , 1q, and

v⌦ “

22ÿ

i“8
vi.

If u “ py1, y2, . . . , y24q P R24 then u can be expressed as y1v8 ` y2v0 ` ¨ ¨ ¨ ` y24v22, where

yi P R.

Definition II.0.3. The set of all n-ads is denoted by ⌦n. As an example,

⌦4 “ tT Ä ⌦ | |T | “ 4u.

Theorem II.0.4. The zero Leech lattice set ⇤0 contains all vectors 4vT , where T is in ⌦4

and 4vi ´ 4vj , where i and j are in ⌦.

Proof. Let U, V and T be three tetrads of a sextet. This implies that

2vT`U ` 2vT`V ´ 2vU`V P ⇤0,

and

2vT`U ` 2vT`V ´ 2vU`V “ 4vT .

16
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If we assume that T, U and V are the first three tetrads, respectively, then the sum is

2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

`

2 2 2 2 0 0 0 0 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0

´

0 0 0 0 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0

“

4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.

Hence, 4vT is in ⇤0. Now, let T be the set ti, k, t, qu and T 1 be the set tj, k, t, qu then

we have

4vT ´ 4vT 1 “ 4vi ´ 4vj.

From the previous proof we obtain this 4vi ´ 4vj is in ⇤0 where i and j are in ⌦. Then

the sum is

4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

´

0 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

“

4 0 0 0 ´4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.

Theorem II.0.5. A vector let say v belongs to ⇤0 if and only if its coordinate-sum is a mul-

tiple of 16 and the coordinates not divisible by 4 fall in the places of a C ´set, the coordinates

being all even.

Proof. Suppose v is in ⇤0, then v can be expressed as 2kvC , where C is in the C8 and

k is an integer then

v “

ÿ

iPC
2kvi

2k 2k 2k 2k 2k 2k 2k 2k 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.
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The coordinate-sum is a multiple of 16 and the set of i is an octad so it is in the C ´set.

Conversely, there are three cases which can be written v “ px1, . . . , x24q as a vector

which satisfies
24ÿ

i“1

xi “ 16 d, where d P Z

and its coordinates not divisible by four fall in the places of a C ´set which are 4vi´4vj,

where i, j P ⌦, 4vT , where T is in ⌦4 or 2vC , where C is in C8 and they are all in ⇤0.

Definition II.0.6. The Leech lattice ⇤ is a set that is spanned by v⌦ ´ 4v8 and the zero

Leech lattice’s vectors. Moreover, the vector v⌦ ´ 4vi is in ⇤, where i is in ⌦. To see this

v⌦ ´ 4vi “ v⌦ ´ 4v8 ` 4v8 ´ 4vi,

and the vector 4v8 ´ 4vi is in ⇤0, which is implies that the vector v⌦ ´ 4vi is also in ⇤. The

Leech lattice ⇤ may be defined as Z-module.

Theorem II.0.7. The integral vector x “ px8, x0, . . . , x22q, (that is each xi is in Z) is in

the Leech lattice ⇤ if and only if

i. The coordinates xi are all congruent modulo 2, to m say,

xi ” m pmod 2q, where i “ 8, 0, 1, . . . , 22.

We may see this in di↵erent way as x is an even vector if xi ” 0 pmod 2q, and x is an

odd vector if xi ” 1 pmod2q.

ii. The set of i for which xi takes any given modulo 4 is a C ´set. That is the set ti | xi ”

k pmod 4qu belongs to the C ´set, for each k, where k is an integer.

iii. The coordinate-sum is congruent to 4m modulo 8,

22ÿ

i“8
xi ” 4m pmod 8q.

For any two vectors that are in the Leech lattice ⇤, the scalar product of them is equal to a

multiple of 8 whereas, the scalar product of the vector and itself is equal to a multiple of 16.
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Proof. Let x be in the Leech lattice ⇤. Then by generating vector of ⇤, the vector

x can be expressed as v⌦ ´ 4v8 or 2vC , where C is in C8. If x is v⌦ ´ 4v8, then its

coordinates are odd which could be assumed as

¯3 ˘ 1 ˘ 1 ˘ 1 ˘1 ˘ 1 ˘ 1 ˘ 1 ¨ ¨ ¨ ˘1 ˘ 1 ˘ 1 ˘ 1,

since xi ” 1 pmod 2q, the set of i, where xi ” 1pmod 4q is ⌦ which is in the C ´set, and

ÿ
xi “ 20 ” 4 pmod 8q.

Hence, the vector x satisfies (i), (ii) and (iii). Now, if x is 2vC then its coordinates are

even which may be assumed as

2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,

since xi ” 0 pmod 2q, the set of i, where xi ” 2 pmod 4q is an octad which is in the

C ´set and
ÿ

xi “ 16 ” 0 pmod 8q.

Hence, the vector x satisfies (i), (ii) and (iii). In general, it is true for any linear

combinations of elements of the Leech lattice ⇤. Conversely, from [Con3]. If the vector

x satisfies (i), (ii) and (iii) we can find v which has

ÿ
xi “ 16 d, where d P Z,

and its coordinates are even, such that x´ kpv⌦ ´ 4v8q “ v. Moreover, from Theorem

II.0.5, we get v is in ⇤0, which implies that x is in ⇤. There are many cases here and

they cannot all be written, but they are all similar calculations. We explain just two

cases; one odd case and one even case. For the odd case we choose x as

´3 1 1 1 ´3 ´ 3 ´ 3 ´ 3 ´3 ´ 3 ´ 3 ´ 3 1 1 1 1 1 1 1 1 1 1 1 1.

Firstly, each of xi ” 1 pmod 2q, the set of i, where xi ” 1 pmod 4q is ⌦ which is in the

C ´set and
ÿ

xi “ ´12 ” 4 pmod 8q,
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which shows that the vector x satisfies (i), (ii) and (iii). Now,

´3 1 1 1 ´3 ´ 3 ´ 3 ´ 3 ´3 ´ 3 ´ 3 ´ 3 1 1 1 1 1 1 1 1 1 1 1 1

´

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

`

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

“

0 0 0 0 ´4 ´ 4 ´ 4 ´ 4 ´4 ´ 4 ´ 4 ´ 4 0 0 0 0 0 0 0 0 0 0 0 0,

we get

x ´ pv⌦ ´ 4v8q “ ´4vC ,

and
ÿ

´4vC “ ´32.

For the even case we may choose x as

0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2.

Firstly, each of xi ” 0 pmod 2q, the set of i, where xi ” 2 pmod 4q is dodecad which is

in the C ´set and
ÿ

xi “ 24 ” 0 pmod 8q.

This shows that the vector x satisfies (i), (ii) and (iii).

0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2

´

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

`

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

“

6 ´ 2 ´ 2 ´ 2 ´2 ´ 2 ´ 2 ´ 2 ´2 ´ 2 ´ 2 ´ 2 0 0 0 0 0 0 0 0 0 0 0 0,
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we get

x ´ 2pv⌦ ´ 4v8q “ 6v8 ´ 2vi ´ 2vj ´ 2vk ´ 2vC .

We may assume that i, j and k are in the first tetrad, so we have

ÿ
6v8 ´ 2vi ´ 2vj ´ 2vk ´ 2vC “ ´16.

Definition II.0.8. The subset of Leech lattice ⇤ that consists of all vectors which have scalar

product equal to 16n, is denoted by ⇤n,

⇤n “ tx P ⇤ | x ¨ x “ 16nu.

Remark II.0.9. The first Leech lattice set ⇤1 is an empty set, if it were not then there would

exist a vector which satisfies x ¨ x “ 16. From Theorem II.0.7 x is in ⇤, then its coordinates

must be all even or odd. There is no way to have a vector x with all its coordinates odd and

x ¨ x “ 16. If we assume that all coordinates of x are even, then there are two possibilities

which are

˘2 ˘ 2 ˘ 2 ˘ 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.

However, it is not satisfied the second condition in Theorem II.0.7 since the set of i, where

xi ” 2 pmod4q is a tetrad which is not in the C ´set. Another possible way is that,

˘4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.

However, it does not satisfy the third condition in Theorem II.0.7 since 8 - 4. Hence, ⇤1 is

an empty set. Now, suppose x is in ⇤2, then x ¨ x “ 32. The only way to have a vector x

with its coordinates are all odd is

¯3 ˘ 1 ˘ 1 ˘ 1 ˘1 ˘ 1 ˘ 1 ˘ 1 ¨ ¨ ¨ ˘1 ˘ 1 ˘ 1 ˘ 1.

Notice that, x also is in ⇤ since each xi ” 1 pmod2q, the set of i, let say S, where xi ”

1 pmod4q is ⌦ which is in the C ´set, and

ÿ
xi “ 20 ” 4 pmod8q.
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Moreover, there are 212 ways for choosing S and 24 positions for (¯3), thus, there are 24 ¨212

vectors of this shape. Whereas, if its coordinates are all even than there are three possibilities

which are

˘4 ˘ 2 ˘ 2 ˘ 2 ˘2 0 0 0 0 0 0 0 ¨ ¨ ¨ 0 0 0 0.

However, it does not satisfy the second condition in Theorem II.0.7 since the set of i, where

xi ” 2 pmod4q is a tetrad which is not in the C ´set. The second possibility is that

˘2 ˘ 2 ˘ 2 ˘ 2 ˘2 ˘ 2 ˘ 2 ˘ 2 ¨ ¨ ¨ 0 0 0 0.

It is satisfied that xi ” 0 pmod2q, the set, say O of i, where xi ” 2 pmod4q is an octad, and

the sign ` must be evenly to be

ÿ
xi ” 0 pmod8q.

Moreover, there are 759 way for choosing O and 27 to choose sign (`) evenly. Hence, there

are 27 ¨ 759 vectors. The last possibility is that

˘4 ˘ 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.

It is satisfied that xi ” 0 pmod2q, the coordinates are divided by four and

ÿ
xi “ 0 pmod 8q.

Furthermore, there are
`24
2

˘
ways for choosing the position of (˘4) and 22 to choose the sign.

Thus, there are 22 ¨
`24
2

˘
vectors.

Remark II.0.10. The order of ⇤2, ⇤3 and ⇤4 are 22 ¨
`24
2

˘
` 27 ¨ 759 ` 24 ¨ 212 “ 196560,

212 ¨ 32 ¨ 5 ¨ 7 ¨ 13 “ 16773120, 24 ¨ 37 ¨ 53 ¨ 7 ¨ 13 “ 398034000, respectively, see table II.1.

II.1 The zero Conway group Co0

II.1.1 The zero Conway group Co0 and the Leech lattice

Definition II.1.1. The group of all orthogonal transformations of R24 fixing zero vector and

preserving the Leech lattice ⇤ as whole is called the zero Conway group Co0, and it is not a

simple group but it has simple subgroups, see table II.7.



23 II.1. The zero Conway group Co0

Class Shape No.

⇤2
2 p28 016q 27 ¨ 759

⇤3
2 p3 123) 212 ¨ 24

⇤4
2 p42 022q 22 ¨

`
24
2

˘

⇤2
3 p212 012q 211 ¨ 2576

⇤3
3 (33 121) 212 ¨

`
24
3

˘

⇤4
3 (4 28 015) 28 ¨ 759 ¨ 16

⇤5
3 (5 123) 212 ¨ 24

⇤2`
4 (216 08) 211 ¨ 759

⇤2´
4 (216 08) 211 ¨ 759 ¨ 15

⇤3
4 (35 119) 212 ¨

`
24
5

˘

⇤4
4 (44 020) 24 ¨

`
24
4

˘

⇤4`
4 p42 28 014q 29 ¨ 759 ¨

`
16
2

˘

⇤4´
4 (4 212 011) 212 ¨ 2576 ¨ 12

⇤5
4 (5 32 121) 212 ¨

`
24
3

˘
¨ 3

⇤6
4 (6 27 016) 27 ¨ 759 ¨ 8

⇤8
4 (8 023) 21 ¨ 24

Table II.1: The vectors of ⇤2, ⇤3 and ⇤4

Remark II.1.2. A permutation ⇡ of ⌦, it can be extended to an orthogonal transformation

of R24 defined by vi⇡ “ vi⇡. Moreover, if S is a subset of ⌦, then "S is an orthogonal

transformation of R24 define by

vi"S “ vi pi R Sq or ´ vi pi P Sq.

Theorem II.1.3. The following conditions on an element � of Co0 are equivalent:

i. vi� “ ˘vj , where i, j are in ⌦, and some sign (˘).

ii. � “ ⇡"S , where ⇡ is in M24 and a set S is in C .

These operations form a subgroup N “ 212 : M24.
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Proof. Let � be ⇡"S, where ⇡ is in M24 and S is in C . Then we have

vi� “ vi⇡"S “ vi⇡"S “ ´vi⇡ pi P Sq or vi⇡ pi R Sq.

By assuming i⇡ “ j, where i, j are in ⌦ and ⇡ is a permutation of ⌦. Now, we show

(i) implies (ii). Let vi� be ˘vj, then the orthogonal matrix of � is
»

———————————————–

¨ ¨ ¨ 0 ¨ ¨ ¨

¨ ¨ ¨ 0 ¨ ¨ ¨

...
...

... ¨ ¨ ¨
... ¨ ¨ ¨

0 ¨ ¨ ¨ 0 ¨ ¨ ¨ ˘1 ¨ ¨ ¨ 0
...

...
... ¨ ¨ ¨

... ¨ ¨ ¨

0 ¨ ¨ ¨ ˘1 0 ¨ ¨ ¨ 0

¨ ¨ ¨ 0 ¨ ¨ ¨ 0 ¨ ¨ ¨

fi

���������������fl

Notice that, the vector 4vi ` 4vk under � is four times the sum of vi and vk that is

ith kth

0 0 0 0 ¨ ¨ ¨ ¨ ¨ ¨ ˘4 ¨ ¨ ¨ 0 ˘4 ¨ ¨ ¨ 0 0 0 0.

From table II.1, we can see this vector is in ⇤2. This means that � permutes elements

with (`) or (´) so we can write it as � “ ⇡"S, where S is a set and ⇡ is a permutation.

We need to show that ⇡ is in M24 that is ⇡ preserves C . Let C be in C then we have

2vC� “ 2
ÿ

vi� “ ˘2
ÿ

vj “ 2vC1 ,

where C and C 1 are in C , this implies that the permutation ⇡ preserves C . Thus, ⇡ is

in M24. Now, if a vector v is in the Leech lattice ⇤ then v can be expressed as v⌦ ´4v8

´3 1 1 1 1 1 1 1 ¨ ¨ ¨ 1 1 1 1.

It can be seen that the set S of i, where xi ” 3 pmod 4q is ⌦ which is in the C ´set

v⌦ ´ 4v8� “ ˘v⌦⇡ ´ 4v8⇡ “ pv⌦ ´ 4v8q⇡"S, whereS P C .

Hence,

� “ ⇡"S, where S P C .
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II.1.2 The maximal subgroup N of Co0

Corollary II.1.4. The group N “ t� “ ⇡"S | ⇡ P M24, S P C u is a subgroup of Co0 and it

has order 212 ¨ |M24|.

Proof. Let �1 be ⇡1"C1 and �2 be ⇡2"C2 P N , where ⇡1, ⇡2 are in M24 and C1, C2 are

in C , we need to show that �1 ˝ �2 is in N and �´1
1 is also in N . Now,

�1 ˝ �2 “ ⇡1"C1⇡2"C2 “ ⇡1 ˝ ⇡2"C1"C2

since M24 is a group, we can assume that ⇡1 ˝ ⇡2 “ ⇡1 which is in M24, and "C1"C2 “

"C1`C2 , where C1 `C2 is in C . Hence, �1 ˝�2 is in N . Similarly, we can show that �´1
1

is in N . Thus, N is a subgroup of Co0. Moreover, N can be considered as the group

M24 acting on the elements of the elementary abelian group E of order 212 (notice that

E “ t"C | C P C u and |C | “ 212). Therefore, N has order 212 ¨ |M24|.

Remark II.1.5. If ⌅ is a sextet of T then we define a map ⌘ : R24
Ñ R24 by

vi fiÑ vi ´
1

2
pvi ` vj ` vk ` vtq, where i P T “ ti, j, k, tu P ⌅.

From Remark I.5.14, any two octads intersect in 0, 2, 4 or 8 points, and let the sextet be

⌅ “ T1 Ÿ T2 Ÿ T3 Ÿ T4 Ÿ T5 Ÿ T6, where Ti Ñ ⌦ and i “ 1, . . . , 6.

An octad, say O is either the union of two tetrads, O intersects in three points with one

tetrad of the sextet and O intersects in one point with the rest, or O intersects in two points

with only four of the sextet. In our case, we may assume that the octad O is unoin of the

first two tetrads (T1 and T2), O intersects in three points with the first tetrad T1 and one

point with the rest or O intersects in two points with the first four tetrads and it is disjoint

of the last two tetrads. We get the following

x1 “ 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,

which means that the vector x1 cuts the sextet as (4 4 0 0 0 0). Applying ⌘ on x1

we get

2 fiÑ 2 ´
1

2
p2 ` 2 ` 2 ` 2q “ ´2 and 0 fiÑ 0,
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which we have

x1⌘ “ 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.

In the same way we get

x2 “ 2 2 2 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0,

this means that the vector x2 cuts the sextet as (3 1 1 1 1 1).

x2⌘ “ 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

x3 “ 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 0 0 0 0 0 0 0 0

which means that the vector x3 cuts the sextet as (3 1 1 1 1 1).

x3⌘ “ 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 0 0 0 0 0 0

x4 “ 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

which means that the vector x4 cuts the sextet as (0 4 4 4 4 4 ).

x4⌘ “ 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(n denotes ´n). Notice that, x2⌘ is not in the Leech lattice ⇤ since xi ” 1 “ m pmod 2q, but

ÿ
xi “ ´16 ı 4 “ 4m pmod 8q.

Hence, ⌘ does not belong to Co0. Now, if ⇠T is ⌘"T , where T is in ⌅ (we can assume that

T is T1) then ⇠T can be considered as ⌘ with changing the sign of T , (in our case T is T1).
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Then we get

x1 “ 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x1⇠T “ 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x2 “ 2 2 2 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0

x2⇠T “ 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

x3 “ 2 2 0 0 2 2 0 0 2 2 0 0 0 0 0 0 0 0 0 0 2 0 0 0

x3⇠T “ 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 0 0 0 0 0 0

x4 “ 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

x4⇠T “ 31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

since x1⇠T , x2⇠T , x3⇠T and x4⇠T are in the Leech lattice ⇤, this implies that ⇠T is in Co0.

However, ⇠T is not in N , since T is not in the C ´set which means that N is a proper subgroup

of Co0.

Remark II.1.6. We notice from Remark I.6.7 that is ↵, �, � and � are permutations of ⌦

that generate M24. Now, we define them from R24
Ñ R24 by

vi↵ “ vi↵,

where ↵ “ p8q (0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22).

vi� “ vi� “ v2i,

where � “ p8q (15 7 14 5 10 20 17 11 22 21 19) p0q (3 6 12 1 2 4 8 16 9 18 13).

vi� “ vi� “ v1{´i,

where � “ (8 0) (15 3) (7 13) (14 18) (5 9) (10 16) (20 8) (17 4) (11 2) (22 1) (21 12) (19 6).

vi� “ vi� “ v9i3 pi R Qq or vi3{9 pi P Qq,

where � “ (8)(14 17 11 19 22) (15) (20 10 7 5 21) (0) (18 4 2 6 1) (3) (8 16 13 9 12).

vi" “ vi"Q “ vi"Q “ vi pi R Qq or ´ vi pi P Qq,
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where i is in ⌦ and Q “ t0, 1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18u. Moreover, ⇠ can be considered as

⇠T , where T can be chosen as t0, 3,8, 15u which is fixed by �. Then our sextet is

⌅ “ tt0, 3,8, 15u, t14, 20, 18, 8u, t17, 10, 4, 16u, t11, 7, 2, 13u, t19, 5, 6, 9u, t22, 21, 1, 12uu.

Remark II.1.7. The group N is generated by t↵,�, �, �, "u. In fact if ⇡"C is in N then ⇡ is

in M24 which means that ⇡ can be expressed as linear combination of ↵, �, � and �. Also,

"C can be expressed as linear combination of "Q.

Remark II.1.8. The stabiliser of k points in M24 is a group M24´k on 24´ k points, where

k is less than or equal to five, so the stabiliser of k vectors vi in N24 is a group

N24´k “ E12´k : M24´k.

A splitting extension of an elementary group E12´k of order 212´k by the group M24´k, where

k is less than or equal to five. Notice that, if an element ↵ in ⌦ then the stabiliser of ↵ of N

on ⌦ is

N↵ “ E11 : M23, see table II.2.

No. of point Stabiliser of M24 Order Stabiliser of N24 “ N Order

A point M23 27 ¨ 32 ¨ 5 ¨ 7 ¨ 11 ¨ 23 N23 218 ¨ 32 ¨ 5 ¨ 7 ¨ 11 ¨ 23

Two M22 27 ¨ 32 ¨ 5 ¨ 7 ¨ 11 N22 217 ¨ 32 ¨ 5 ¨ 7 ¨ 11

Three M21 26 ¨ 32 ¨ 5 ¨ 7 N21 215 ¨ 32 ¨ 5 ¨ 7

Four M20 26 ¨ 3 ¨ 5 N20 214 ¨ 3 ¨ 5

Table II.2: Stabiliser groups of N

Remark II.1.9. Table II.3 shows that the orbits of ⇤2, ⇤3 and ⇤4 under group N .

Theorem II.1.10. The stabilisers of ⇤2
2, ⇤

3
2 and ⇤4

2 in N are 25 : 24.A8, M23 and 210 : M22.2,

respectively.

Proof. Let a vector x be in ⇤2
2, assume our x

2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
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No. Orbits

Three ⇤2
2, ⇤

3
2, ⇤

4
2

Four ⇤2
3, ⇤

3
3, ⇤

4
3, ⇤

5
3

Eight ⇤2
4, ⇤

3
4, ⇤

4
4, ⇤

4`
4 , ⇤4´

4 , ⇤5
4, ⇤

6
4, ⇤

8
4

Table II.3: Orbits under N

and � be in Nx “ t� P N | x� “ xu, so we can express � as ⇡"C , where C is in C and

⇡ is in M24, which fixes an octad. From table I.2, we have ⇡ is in 24.A8, and for the

sign we have 25. Thus, � belongs to the group 25 : 24.A8 “ Nx. Now, let y be in ⇤3
2,

assume our y

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1,

and � be in Ny “ t� P N | y� “ yu. So, we can express � as ⇡"C , where C is in C

and ⇡ is in M24, which fixes a point. Again from table I.2, we have ⇡ is in M23. Thus,

� belongs to the Mathieu group M23 “ Ny. Similarly, if z is in ⇤4
2, we might assume

that our z is

4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,

and � is in Nz “ t� P N : z� “ zu, then we can express � as ⇡"C , where C is in C

and ⇡ belongs to M24, which fixes a dyad. In particular, from table I.2, ⇡ belongs to

M22.2, and for the sign is 210. Thus, � is in the group 210 : M22.2 “ Nz.

Theorem II.1.11. The group N is not a normal subgroup of Co0.

Proof. Let � be in N , ⇠T be ⌘"T and take a vector 8v8

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.

Then by applying ⇠´1
T

to 8v8, we have

4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.
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Now, we may choose � as ⇡"C , where T XC “ t0u, so applying � on our vector we get

shape (42 (´42) 020), now by applying ⇠T we have

4 4 4 4 fiÑ 4 4 4 4.

This means that ⇠´1
T
�⇠T is not in N , hence N is not a normal subgroup.

Remark II.1.12. In 1969, Conway proved that N is a maximal subgroup of Co0.

Definition II.1.13. The set of all vectors adjacent to the vector x and distinct from x is

denoted by ⇤pxq, and xK
“ ⇤pxq Y txu.

Theorem II.1.14. The group H that is generated by N and ⇠T is transitive on ⇤2 and Hx

is transitive on ⇤2pxq.

Proof. We need to prove that H is transitive on ⇤2, that is we need to prove that for

any x and y in ⇤2 there exists an element � which is in H such that x “ y�. From

table II.1, there are three shapes of a vectors in ⇤2. As we can see from above, x2

has shape (28 016) which is in ⇤2
2, and ⇠T takes x2 to a vector which has shape (18 31

(´115)) which is in ⇤3
2. Moreover, the vector x “ 4vi ´ 4vj, where i ‰ j, and they are

in two di↵erent tetrads, we have

x “ 4 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x⇠T “ 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.

Notice that, ⇠T takes x to a vector which has shape ((´24) 24 016) that is in ⇤2
2. Hence,

the subgroup H of Co0 is transitive on ⇤2. Now, we show that Hx is transitive on

⇤2pxq, where x is in ⇤2. Let the vector x be v´⌦ ´ 4v8, then there exists an element ↵

which is in Nx and Hx with order 23 such that y↵ ‰ y for all y in ⇤2pxq. This means

that yHx “ ⇤2pxq that is Hx is transitive on ⇤2pxq. Moreover, |⇤2pxq| “ 93150.

Theorem II.1.15. The zero Conway group Co0 has order 222 ¨ 39 ¨ 54 ¨ 72 ¨ 11 ¨ 13 ¨ 23.

Proof. From Orbit-Stabiliser Theorem, we have |H| “ |xH
||yHx ||Hx,y| and since H is

transitive on ⇤2 then we get this |xH
| “ |⇤2| and since Hx is transitive on ⇤2pxq then
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we get |yHx | “ |⇤2pxq|. Thus, |H| “ |⇤2||⇤2pxq||Hx,y| for any orthogonal pair x and y

that are in ⇤2. Let the vector x be 4vi ` 4vj, y be 4vi ´ 4vj and � be in Hx,y, then if �

fixes x and y then vi is fixed by �. Hence, � is in N so, Hx,y “ Nx,y “ N22 which is a

group of order 210 ¨ |M22|. Thus, |H| “ 196560 ¨ 93150 ¨ 210 ¨ |M22|, and this shows that

N is a proper subgroup of H, which is only possible if H “ Co0.

Theorem II.1.16. The zero Conway group Co0 is transitive on the two sets ⇤3 and ⇤4.

Moreover, it is generated by N together with any element ⇠T .

Proof. We need to prove that Co0 is transitive on ⇤3 and ⇤4, that is we need to prove

that for any x and y in ⇤i there exists � which is in Co0 such that x “ y�. From table

II.1, there are four shapes of a vectors in ⇤3 which are (212 012), (33 121), (4 28 015)

and p5 123) then we have the following

x1 “ 2 2 2 0 2 2 2 0 2 2 2 0 2 0 0 0 2 0 0 0 2 0 0 0

x1⇠T “ 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1.

Notice that, ⇠T takes x1 to a vector which has shape (16 3 (´32) (´115)) which is in

⇤3
3.

x2 “ 3 1 1 1 3 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

x2⇠T “ 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

we have x2⇠T a vector which has shape (51 (´122) 11) that is in ⇤5
3.

x3 “ 4 0 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 0 0 0 0

x3⇠T “ 2 2 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 0 0

we have x3⇠T which has shape ((´29) 23 012) that is in ⇤2
3.

x4 “ 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

x4⇠T “ 1 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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we have x4⇠T to vector which has shape (33 (´121)) that is in ⇤3
3. Hence, the zero

Conway group Co0 is transitive on ⇤3. It is similarly with ⇤4. Now, let our vector x

be 8v8

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.

Then there are 48 images of this vector under N which are (˘8vi), where i is in ⌦. If

an element � in Co0 such that the image of 8v8 under � is (˘8vi), then � belongs to

N . Now, for an element � in Co0 there exists µ which is in H such that the image of

8v8 under � is equal to 8v8� which implies that � is in Nµ.

Corollary II.1.17. The index of N in Co0 is the order of ⇤4 divides by 48.

Proof. The stabiliser of a point of N on ⇤4 is Nx, where x belongs to ⇤4, and notice that

pCo0qx “ Nx then rCo0 : Nxs “ |xCo0 |, since Co0 is transitive on ⇤4 then |xCo0 | “ |⇤4|.

From Remark II.1.8 we have |Nx| “ 211¨|M23|. Hence, rCo0 : Nxs “ rCo0 : N s¨rN : Nxs,

this implies that rCo0 : N s “
rCo0:Nxs
rN :Nxs . Thus, rCo0 : N s “

|⇤4|
48 , where rN : Nxs “ 48.

Remark II.1.18. Notice that, the shape (81 023) under ⌘ goes to a vector whose shape is

(43 (´41) 020), and the row in the matrix of ⌘ have 1
2 in every position T and zeros elsewhere.

However, four times the sum or di↵erence of this row and any other must be a vector in ⇤2

which has shape (28 016) or (42 022). Therefore, the matrix of ⌘ is

1
2

»

——————–

1 ´1 ´1 ´1

´1 1 ´1 ´1

´1 ´1 1 ´1

´1 ´1 ´1 1

fi

������fl

and the matrix of ⇠T is the direct sum of six 4ˆ 4 matrices of ˘
1
2 ’s in the places of a sextet.

Moreover, the generator matrix for the Leech lattice ⇤ is in figure II.1.1.
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1p
8

2

666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666664

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0

2 2 2 2 0 0 0 0 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0

2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 0 0 0 0 0 0 0 0

2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 0 0 0 0 0 0 0

2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0

2 0 2 0 2 0 0 2 2 2 0 0 0 0 0 0 2 2 0 0 0 0 0 0

2 0 0 2 2 2 0 0 2 0 2 0 0 0 0 0 2 0 2 0 0 0 0 0

2 2 0 0 2 0 2 0 2 0 0 2 0 0 0 0 2 0 0 2 0 0 0 0

0 2 2 2 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0

0 0 0 0 0 0 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0

0 0 0 0 0 0 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0

�3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3

777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777775

Figure II.1.1: Generator matrix for the Leech lattice ⇤
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II.1.3 The Leech lattice modulo 2

Definition II.1.19. A frame or cross is a set of 48 vectors that have type four, saying x and

y in the same frame if x ¨ y “ 0 or x “ ´y, i.e. it consists of 24 orthogonal pairs of opposite

vectors.

Remark II.1.20. In fact one such cross is the standard cross which is this set tp8, 0, . . . , 0q,

p´8, 0, . . . , 0q, p0, 8, . . . , 0q, p0,´8, . . . , 0q, p0, 0, 8 . . . , 0q, p0, 0,´8, . . . , 0q, . . . , p0, 0, 0, . . . , 8q,

(0, 0, 0, . . . ,´8qu and it is the set ⇤8
4 which has order 48, see tables II.1 and II.4.

Corollary II.1.21. The stabiliser of the standard cross is N .

Proof. From table II.4, the standard cross is ⇤8
4 then we need to show

N “ t� P Co0 | x� P ⇤8
4, where x P ⇤8

4u.

Let x be in ⇤8
4, � be an element in Co0 and x� be in ⇤8

4 then x “ 8vi or x “ ´8vi and

x� “ 8vk or ´8vk, where i and k are in ⌦. Thus, � is in N . Now, if � is in N and x is

in ⇤8
4 then x� “ ˘8vi, where i is in ⌦. This implies that � belongs to NCo0p⇤8

4q. We

can get the rest of the crosses by applying ⇠T for some T to this cross.

Orbit Type 4-vectors | Sign changes | “ 2m | Type | ˆ 212´m Number

(I) Standard p8, 023q 212 1 1

(II) Sextet p44, 020q 211 1771 ¨ 2 3542

(III) Octad p´6, 27, 016q, p08, 216q 26 759 ¨ 26 48576

(IV) Triad p5,´32, 121q, p13,´35, 116q 2
`
24
3

˘
¨ 211 4145152

(V) Involution p08,´22, 214q, p28, 42, 014q 25 759 ¨ 15 ¨ 27 1457280

(VI) Duum p4, 011,´2, 211q 2 1288 ¨ 211 2637824

Table II.4: The six types of cross

Corollary II.1.22. The permutation representation of the zero Conway group Co0 on ⇤4 is

imprimitive.
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Proof. If � is a frame and � is a subset of ⇤4 then � is a block of ⇤4 since �� “ �

or �� X � “ H, where � is in Co0. We may assume that our block is ⇤8
4 then let �

be in Co0, if � is in N then ⇤8
4� is equal to ⇤8

4 and if � is not in N then ⇤8
4� is not

equal to ⇤8
4 since the stabiliser of ⇤8

4 on Co0 is N . Now suppose �1, �2 do not belong

to N then there exists µ1 and µ2 which are in H such that �1 is in Nµ1 and �2 is in

Nµ2. Now, if we assume that 8v8�1 is equal to 8v8�2 which implies that �1 is in Nµ2

which is a contradiction so ⇤8
4�1 is not equal to ⇤8

4�2 and the imprimitive system is

t⇤8
4 � | � P Co0u.

Theorem II.1.23. Every vector of ⇤ is congruent modulo 2⇤ to one of:

i. the zero vector;

ii. each vector of a unique pair x, ´x, where x is in ⇤2;

iii. each vector of a unique pair x, ´x, where x is in ⇤3;

iv. each of the 48 vectors of a coordinate-frame.

Proof. Let x and y be in ⇤0 Y ⇤2 Y ⇤3 Y ⇤4, y ” x pmod 2⇤q and y is not equal to

either x or p´xq, then y ˘x “ 2w, where w is in ⇤, w ¨w = 16 ¨ d and d is greater than

or equal to two.

py ˘ xq ¨ py ˘ xq “ 4w ¨ w and 4w ¨ w “ 4 ¨ 16 ¨ d, where d • 2.

Hence,

16 ¨ 8 § 4w ¨ w “ py ˘ xq ¨ py ˘ xq § px ¨ xq ` py ¨ yq § 16 ¨ 8.

This implies that

py ˘ xq ¨ py ˘ xq “ 8 ¨ 16

and x ¨ y “ 0, so,

x ¨ x “ y ¨ y “ 16 ¨ 4.
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Thus, x and y are in ⇤4 which are both in the same coordinate-frame. Therefore, there

are at least

1 `
1

2
|⇤2| `

1

2
|⇤3| `

1

48
|⇤4| “ 224,

distinct classes of ⇤{2⇤.

Definition II.1.24. A vector x has type n, if it is in ⇤n and it has type nab if x is the sum

of two vectors of types a and b.

Theorem II.1.25. Every vector x of type n has some type nab in which a ` b “
1
2pn ` kq,

where k “ 0, 2, 3 or 4 (corresponding to the cases of the Theorem above), and these possibilities

are exclusive. The zero Conway group Co0 is transitive on vectors of each of the types 2, 3,

5, 622, 632, 7, 822, 832, 842, 933, 942, 1033, 1042, 1143 and 1152, which include all vectors of

type n that is less than or equal to twelve.

Proof. Let x have type n, y be in ⇤0 Y ⇤2 Y ⇤3 Y ⇤4 and x ” y pmod 2⇤q this implies

that 1
2px˘ yq are in ⇤. Then x “

1
2px` yq `

1
2px´ yq and we may assume that 1

2px` yq

has type a and 1
2px ´ yq has type b. Hence, the vector x has type nab. For the second

part, we explain only two cases.

Case i: Let x ´ y has type 632, x be in ⇤2, y be in ⇤3 and x ¨ y “ ´8. Then

px ` yq ¨ px ` yq “ x ¨ x ` 2x ¨ y ` y ¨ y “ 4p16q.

Hence, x ` y is in ⇤4. We may assume that

x ` y “

´
8, 0, 0, 0, 0, 0, 0, 0, . . . , . . . , 0, 0, 0, 0

¯
,

where

x “

´
5, 1, 1, 1, . . . , . . . , 1, 1, 1, 1, 1, 1, 1, 1

¯
"C ,

and

y “

´
3, ´1, ´1, ´1, . . . , . . . , . . . , ´1, ´1, ´1, ´1

¯
"C ,
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where C is in C and 8 does not belong to C. This is the only way to express x` y as

p8, 0, . . . , 0q, where x is in ⇤3 and y is in ⇤2. We may assume that C is an empty set,

so we have

x ´ y “

´
2, 2, 2, 2, 2, 2, 2, 2, . . . , . . . , . . . , 2, 2, 2, 2

¯
.

Case ii: Let x ´ y has type five, x, y are in ⇤2 and x ¨ y “ ´8. Then

px ` yq ¨ px ` yq “ x ¨ x ` 2x ¨ y ` y ¨ y “ 3p16q.

Hence, x ` y is in ⇤3. We may assume that

x ` y “

´
5, 1, 1, 1, 1, 1, 1, 1, . . . , . . . , 1, 1, 1, 1

¯
,

where

x “

´
3, ´1, ´1, ´1, ´1, ´1, ´1, ´1, 1, . . . , . . . , 1, 1

¯
,

and

y “

´
2, 2, 2, 2, 2, 2, 2, 2, . . . , . . . , 0

¯
,

we get x ´ y

˘

´
1, ´3, ´3, ´3, ´3, ´3, ´3, ´3, 1, . . . , . . . , 1

¯
.

Another way we may choose

x “

´
4, 4, 0, 0, 0, 0, . . . , . . . , 0, 0

¯
,

and

y “

´
1, ´3, 1, 1, . . . , . . . , . . . , 1

¯
,

we have x ´ y

˘

´
´3, ´7, 1, 1, 1, . . . , . . . , . . . , 1

¯
.

The coordinates (´3) in the first case being in a special heptad S7. In the first case

we have u1 as

1 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.
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Applying ⇠T and choosing T to be the first tetrad in ⌅, then we get

5 1 1 1 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1,

and in the second case we have u2 as

3 1 1 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.

Applying ⇠T and choosing T to be the first tetrad in ⌅ we get

3 1 1 1 1 5 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.

Which are plainly equivalent under M24 (that is we can find ⇡ P M24 such that u1⇡ “

u2). The other cases are similar calculations, we might use counting methods of Conway

(1969) to do it more easily.

II.1.4 Subgroups of the zero Conway group Co0

Definition II.1.26. The infinite group of all euclidean congruences of the Leech lattice ⇤ is

Co8 or ¨8, including translations. Any finite subgroup of Co8 fixes a point (not necessarily

a lattice point) and so there is a translation t of R24 such that Gt
Ñ Co0.

Remark II.1.27. If S is the name of a simplex, we use ¨S for the subgroup of these elements

of Co8 which fix every vertex of S, ˚S for a subgroup of elements fixing S as a whole, and

!S for a subgroup fixing centroid. It can be seen that ¨S is a subset of ˚S and ˚S is a subset

of !S. Moreover, a simplex is then named by the types of its edges. Thus, the stabiliser of

two points whose di↵erence is a vector of type n is written ¨n, the stabiliser of the vertices

of a triangle whose sides have types a, b, c is written ¨abc and so on, see figure II.1.2. The

particular groups ¨1, ¨2, ¨3 are also Co1, Co2, Co3, respectively. In figure II.1.2, These groups

are identified in table II.7. The group ¨623 is the stabiliser of

´
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, . . . , 2

¯
,

and as we see in Theorem II.1.23 there are 24 ways to write z “ x` y, where x has type two

and y has type three in particular,

x “

´
´3, 1, 1, 1, 1, 1, 1, 1, 1, . . . , 1

¯
,
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a

A simplex has type a

a

b c

A simplex has type abc

��

↵

a

b c

A simplex has type abc↵��

�

�

↵

a

✏

e

�

b

c d

A simplex has type abcde↵���✏

Figure II.1.2: Types

and

y “

´
5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . . , 1

¯
.

Notice that,

y ´ x “

´
8, 0, 0, 0, 0, 0, 0, 0, 0, . . . , 0

¯
,

which means that 8vi under ¨623 goes to (˘8vj) that is ¨623 is a subset of N and therefore,

¨623 “ M24. At the same time ¨632 is the stabiliser of z, y and x. Notice that, M23 is the

stabiliser also of z, y and x, which implies that M23 “ ¨632. The groups ¨632 and ¨432 are

identical, since a parallelogram with sides
?
2 and

?
3 with one diagonal

?
6 might have the

other diagonal
?
4, see figure II.1.3. Thus, ¨632 = ¨432 “ M23. The group M23 is contained

in each of M24, Co2, Co3 and Co4. Firstly, the group M23 is a subgroup of M24, then M23 is

a subset of ¨623. Moreover, M23 fixes

z “

´
5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . . , 1

¯
,
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p
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2
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Figure II.1.3: Parallelogram with sides
?
2,

?
3 and diagonals

?
6,

?
4

which has type two

y “

´
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, . . . , 2

¯
,

which has type six and

y ´ z “

´
´3, 1, 1, 1, 1, 1, 1, 1, 1, . . . , 1

¯
,

which has type two hence M23 is a subset of Co2. Notice that, M23 fixes also

x “

´
´3, 1, 1, 1, 1, 1, 1, 1, 1, . . . , 1

¯
,

which has type two

y “

´
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, . . . , 2

¯
,

which type six and

x ´ y “

´
5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . . , 1

¯
,

which has type three. Hence, M23 is a subset of Co3. Similarly, M23 fixes

x “

´
´3, 1, 1, 1, 1, 1, 1, 1, 1, . . . , 1

¯
,

which has type two

z “

´
5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . . , 1

¯
,

which has type three and

z ´ x “

´
8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . . , 0

¯
,

which has type four. Hence, M23 is a subset of Co4.
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II.1.5 The Higman-Sims group pHSq

The Higman-Sims group is a simple group which was discovered by D. G. Higman and

C. C. Sims in 1968 [Gal]. It is the group of even permutations of a certain graph on

100 vertices, in particular, it is ¨332 group. Now, let X be 4vi ` v⌦, Y be 4vj ` v⌦ and

Z be 0, where i, j are in two di↵erent tetrads. Then XY Z is a triangle of type 332.

There are 100 points T such that XY ZT is of type 332222, which are P “ 4vi ` 4vj,

22 points of the form Qk “ v⌦ ´ vk, where k is in ⌦zti, ju, and 77 points the form

RK “ 2vK , where K is in C8. We say that two of these points are incident when their

di↵erence has type three, so we have

T

p
2

p
2

p
3

p
3

p
2

p
2

X

Y Z

Figure II.1.4: Tetrahedra of type 332222

P ´ Qk “ 4vi ` 4vj ´ v⌦ ` 4vk “ ´v⌦ ` 4vi ` 4vj ` 4vk.

It has shape (33 (´121)), which has type three

RK ´ Qk “ 2vK ´ v⌦4 ` 4vk, where pk P Kq,

2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

´

1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

“

1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.

It has shape ((´17) (´51) 116), which has type three and

RK ´ RK1 , where pK X K 1
“ ti, juq,
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2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

´

0 0 0 0 0 0 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0

“

2 2 2 2 2 2 0 0 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0.

It has shape (26 (´26) 012), which has type three. Thus, incidences are pP,Qkq,

pQk, RKq, where k is in K, and pRK , RK1q, where K and K 1 intersect only in i and j.

The incidence graph is visibly identical with the Higman-Sims graph in figure II.1.5.

Corollary II.1.28. The stabiliser of a point of the Higman-Sims group HS on ⇤ is M22.

Proof. Let � be in HS then X� “ X, Y � “ Y and Z� “ Z, where X, Y , Z are as

above. Now, � belongs to HSP this implies that P� “ P so we have

X “ 1 1 1 1 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

´

Y “ 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

´

Z “ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

`

P “ 0 0 4 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

“

0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.

We have X ´ Y ´ Z ` P “ 8vi, where i is in ⌦ which means that � is in N . In

particular, HSP is M22 which is the group of permutations of ⌦ and fixes two points

say i and j.

Corollary II.1.29. The Higman-Sims group HS has order |M22| ¨ 100.

Proof. From Orbit-Stabiliser Theorem, we have

|HS| “ |HSP | ¨ |PHS
| “ |M22| ¨ 100.
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22
22 1 621

16

771

Figure II.1.5: The Higman-Sims graph

Corollary II.1.30. The infinite Conway group Co8 is transitive on triangles of type 332.

Proof. Let � be in Co8 such that � fixes X, Y and Z, but it does not fix P . Let X�

be 2vC , Y � be 2vD, and Z� be 0 where C, D are in C12 and C ` D is in C8. Notice

that, � exists, in particular, � is in the group ¨332. Now suppose K the subgroup of N

and � is in K then � fixes X, Y and Z, but � does not fix any of the 100 points T�.

Notice that, each of T� ´ X�, T� ´ Y �, T� ´ Z� has type two so �´1H� fixes each

of X, Y and Z, but not P . Hence, Co8 is transitive on tetrahedra of type 332222 and

therefore it is transitive on triangles of type 332.

II.1.6 The McLaughlin group McL

The McLaughlin group is a simple group which was discovered by J. McLaughlin in

1969 [Gal]. It is a group of automorphisms of a graph on 275 vertices, in particular,

it is ¨322 group. Also, it has order 27 ¨ 36 ¨ 53 ¨ 7 ¨ 11. Now, let X be 0, Y be 4vi ` v⌦

and Z be ´4vj ` v⌦ where i is not equal to j. Then, Y XZ has triangle of type 322.

There are 275 points T such that Y XZT is of type 322222, which fall into three sets:

22 points in Uk “ tv⌦ ´ 4vk : k P ⌦zti, juu, 77 points in VK “ t2vK : ti, ju Ñ K P C8u,

and 179 points in WK1 “ t2vK1 : K 1
X ti, ju “ tiu and K 1

P C8u.

We say that two of these points are incident when their di↵erence has type three, we

have

WK1 ´ VK “ 2vK1 ´ 2vK whereK X K 1
“ ti, tu and t P ⌦ztju
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Subgroup Order Index

M22 27 ¨ 32 ¨ 5 ¨ 7 ¨ 11 100

PSU3p5q : 2 (two) 25 ¨ 32 ¨ 53 ¨ 7 176

L3p4q : 21 27 ¨ 32 ¨ 5 ¨ 7 1100

S8 27 ¨ 32 ¨ 5 ¨ 7 1100

24 ¨ S6 28 ¨ 32 ¨ 5 3850

43 : L3p2q 29 ¨ 3 ¨ 7 4125

M11 (two) 24 ¨ 32 ¨ 5 ¨ 11 5600

4 ¨ 24 : S5 29 ¨ 3 ¨ 5 5775

2 ˆ A6 ¨ 22 26 ¨ 32 ¨ 5 15400

5 : 4 ˆ A5 24 ¨ 3 ¨ 52 36960

Table II.5: Maximal subgroups of the Higman-Sims group HS

T

p
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p
2

p
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2

Y

X Z

Figure II.1.6: Tetrahedra of type 322222

2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

´

0 0 0 0 0 2 2 0 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0

“

2 2 2 2 2 0 0 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0.

It has shape (´26 26 016), which has type three

Uk ´ WK1 , where k P K 1,



45 II.1. The zero Conway group Co0

1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

´

2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

“

1 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.

It has shape (116 (´51) (´17q), which has type three, and

Uk ´ VK , where k P K,

1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

´

0 0 0 0 0 2 2 0 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0

“

1 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.

It has shape (116 (´51) (´17)), which has type three. So, the incidences are pUk, VKq,

where k is in K, pUk,WK1q, where k is in K 1 and pWK1 , VKq, where pK XK 1
“ ti, tu, t P

⌦ztjuq, see figure II.1.7.

112
112 1 5681

5630

1621

Figure II.1.7: The McLaughlins graph

II.1.7 The group PSU6p2q

The group PSU6p2q is the projective special unitary group of a vector space V with six

dimensions over a finite field GF p4q. In particular, it is ¨222 group which is a simple

group. Notice that if K is a normal subgroup of 6 ¨ M22 which has order two, then

6 ¨M22{H “ 3 ¨M22 which can be generated by some 6ˆ6 unitary matrices over GF p4q,

this implies that 3 ¨ M22 is a subgroup of PSU6.
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Subgroup Order Index

PSU4p3q 27 ¨ 36 ¨ 5 ¨ 7 275

M22 (two) 27 ¨ 32 ¨ 5 ¨ 7 ¨ 11 2025

PSU3p5q 24 ¨ 32 ¨ 53 ¨ 7 7128

31`4 : 2S5 24 ¨ 36 ¨ 5 15400

34 : M10 24 ¨ 36 ¨ 5 15400

L3p4q : 2 27 ¨ 32 ¨ 5 ¨ 7 22275

2 ¨ A8 27 ¨ 32 ¨ 5 ¨ 7 22275

24 : A7 (two) 27 ¨ 32 ¨ 5 ¨ 7 22275

M11 24 ¨ 32 ¨ 5 ¨ 11 113400

51`2 : 3 : 8 23 ¨ 3 ¨ 53 299376

Table II.6: Maximal subgroups of the McLaughlin group McL

II.2 The first Conway group Co1

II.2.1 The first Conway group Co1 and Leech groups

Definition II.2.1. The largest simple Conway group is Co1 which is defined as the quotient

of Co0 by its center, † "⌦ °“ t1,´1u which define as

vi"⌦ “ ´vipi P ⌦q or vipi R ⌦q.

Hence, Co0{ † "⌦ °– Co1. Moreover, the first Conway group Co1 has order

|Co0|{| † "⌦ ° | “ 221 ¨ 39 ¨ 54 ¨ 72 ¨ 11 ¨ 13 ¨ 23.

Theorem II.2.2. The zero Conway group Co0 acts transitively on ordered pairs of vectors

of ⇤2 with any given scalar product.

Proof. In order to prove this we need to show that the number of y that are in ⇤2 is

1, 4600, 47104, 93150, 47104, 4600 or 1 given that x is a given vector in ⇤2 and x ¨ y

equals to 32, 16, 8, 0, ´8, ´16, or ´32, respectively. Let the vector x be 4vi ` 4vj,

where i, j are in ⌦ then we have seven cases
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Name Order Structure

¨0 222 ¨ 39 ¨ 54 ¨ 72 ¨ 11 ¨ 13 ¨ 23 2.Co1
¨1 221 ¨ 39 ¨ 54 ¨ 72 ¨ 11 ¨ 13 ¨ 23 Co1
¨2 218 ¨ 36 ¨ 53 ¨ 7 ¨ 11 ¨ 23 Co2
¨3 210 ¨ 37 ¨ 53 ¨ 7 ¨ 11 ¨ 23 Co3
¨4 218 ¨ 32 ¨ 5 ¨ 7 ¨ 11 ¨ 23 211M23

¨5 28 ¨ 36 ¨ 53 ¨ 7 ¨ 11 McL.2

¨622 216 ¨ 36 ¨ 53 ¨ 7 ¨ 11 PSU6p2q.2

¨632 210 ¨ 33 ¨ 5 ¨ 7 ¨ 11 ¨ 23 M24

¨7 29 ¨ 32 ¨ 53 ¨ 7 ¨ 11 HS

¨822 218 ¨ 36 ¨ 53 ¨ 7 ¨ 11 ¨ 23 Co2
¨832 27 ¨ 36 ¨ 53 ¨ 7 ¨ 11 McL

¨842 215 ¨ 32 ¨ 5 ¨ 7 21`8.A8

¨933 25 ¨ 37 ¨ 5 ¨ 11 35.M11.2

¨942 27 ¨ 32 ¨ 53 ¨ 7 ¨ 11 ¨ 23 M23

¨1033 210 ¨ 32 ¨ 53 ¨ 7 ¨ 11 HS.2

¨1042 217 ¨ 32 ¨ 5 ¨ 7 ¨ 11 210.M22

¨1143 210 ¨ 32 ¨ 5 ¨ 7 24.A8

¨1152 28 ¨ 36 ¨ 5 ¨ 7 PSU4p3q.2

¨222 215 ¨ 36 ¨ 5 ¨ 7 ¨ 11 PSU6p2q

¨322 27 ¨ 36 ¨ 53 ¨ 7 ¨ 11 McL

¨332 29 ¨ 32 ¨ 53 ¨ 7 ¨ 11 HS

¨333 24 ¨ 37 ¨ 5 ¨ 11 35.M11

¨422 217 ¨ 32 ¨ 5 ¨ 7 ¨ 11 210.M22

¨432 27 ¨ 32 ¨ 5 ¨ 7 ¨ 11 ¨ 23 M23

¨433 210 ¨ 32 ¨ 5 ¨ 7 24.A8

¨442 212 ¨ 32 ¨ 5 ¨ 7 21`8.A7

¨443 27 ¨ 32 ¨ 5 ¨ 7 M21.2

¨522 27 ¨ 36 ¨ 53 ¨ 7 ¨ 11 McL

¨532 28 ¨ 36 ¨ 5 ¨ 7 PSU4p3q.2

¨533 24 ¨ 32 ¨ 53 ¨ 7 PSU3p5q

¨542 27 ¨ 32 ¨ 5 ¨ 7 ¨ 11 M22

¨633 26 ¨ 33 ¨ 5 ¨ 11 M12

˚2 “!2 219 ¨ 36 ¨ 53 ¨ 7 ¨ 11 ¨ 23 p¨2q ˆ 2
˚3 “!3 211 ¨ 37 ¨ 53 ¨ 7 ¨ 11 ¨ 23 p¨3q ˆ 2

˚4 219 ¨ 32 ¨ 5 ¨ 7 ¨ 11 ¨ 23 p¨4q ˆ 2

!4 222 ¨ 33 ¨ 5 ¨ 7 ¨ 11 ¨ 23 212.M24

!333 27 ¨ 39 ¨ 5 ¨ 11 36.2.M12

!442 215 ¨ 34 ¨ 5 ¨ 7 21`8.A9

Table II.7: Subgroups of the zero Conway group Co0
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• In the first case x ¨ y “ 32, and y is in ⇤2. Then, the only way for choosing y

which is in ⇤2 is x itself then

y “ 4vi ` 4vj.

• In the second case x ¨y “ 16, and y is in ⇤2. Then there are three possible shapes

for y. If y has shape (42 022), then y can be expressed as 4vj ˘ 4vk, where k is

not equal to j. There are 22 places in which k can fall and two possible sign

changes. Therefore, there are 22 ¨ 2 vectors. Or, ˘4vh ` 4vj, where h is not equal

to i so there are also 22 places in which h can fall and two possible sign changes.

Therefore, 22 ¨ 2 vectors. If y has shape (28 016), then y can be expressed as

2vK"C , where (ti, ju Ä K P C8) and (ti, ju X C “ H, C P C ). From figure I.5.1,

there are 77 octads that intersect in two points say i, j, and 32 possible sign

changes. Hence, there are 77 ¨ 32 vectors. If y has shape (31 (´123)), then y can

be expressed as p4vi ´ v⌦q"C , where j is in C that is in C , there are two possible

positions for 3 and 210 possible sign changes. Thus, there are 2 ¨ 210 vectors, see

table II.8.

Orbit Length

(42 022) 2 ¨ 2 ¨ 22

(28 016) 32 ¨ 77

(31 (´123)) 2 ¨ 210

Table II.8: Orbit of ⇤2 with scalar product 16 under Co0

• In the third case x ¨ y “ 8, and y is in ⇤2. Then there are two possible shapes

for y. If y has shape (28 016), then y can be expressed as 2vK"C , where pK P C8

|K X ti, ju| “ 1) and (ti, ju X C “ H, C P C ). From figure I.5.1, there are 176

octads that contain i, but not j and 27 possible sign changes. Similarly, for 2vK1 ,

where |K 1
X ti, ju| “ 1, there are 176 octads that contain j, but not i and 27

possible sign changes. Now, if y has shape (31 (´123)) then y can be expressed
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as p4vi ´ v⌦q"C , where (ti, ju X C “ H, C P C ), there are two possible positions

for 3 and 210 possible sign changes. Therefore, there are 2 ¨ 210 vectors, see table

II.9.

Orbit Length

(28 016) 2 ¨ 176 ¨ 27

(31 (´123)) 2 ¨ 210

Table II.9: Orbit of ⇤2 with scalar product 8 under Co0

• In the fourth case x ¨ y “ 0, and y is in ⇤2. Then there are three possible shapes

for y. If y has (42022) then y can be expressed as ˘p4vi ´ 4vjq which are two

vectors. Or, ˘pvk ` vhq, where k, h are not equal to either i or j, there are 22

places in which k can fall and 21 places in which h can fall, and four possible

sign changes. Therefore, there are 22 ¨ 21 ¨ 4. If y has shape (28 016) then y can

be expressed as 2vK"C , where (K P C8, ti, ju X K “ H) and (C P C ). From

figure I.5.1 there are 330 octads that do not contain i and j and 27 possible sign

changes. Hence, there are 330¨27 vectors. Or, 2vK1"C where (K 1
P C8 ti, ju Ä K 1)

and (|ti, ju X C| “ 1). Again from figure I.5.1, there are 77 octads that contain

i, j and 26 possible sign changes. Therefore, there are 77 ¨ 26 vectors. Now, if y

has shape ((´31) 123) then y can be expressed as p4vk ´ v⌦q"C , where k is not

equal to either i or j and (|ti, ju X C| “ 1), there are 22 way for choosing k and

211 possible sign changes. Thus, there are 22 ¨ 211 vectors, see table II.10.

Orbit Length

(42 022) 2 ` 22 ¨ 21 ¨ 4

(28 016) 330 ¨ 27 ` 77 ¨ 26

((´31) 123) 22 ¨ 211

Table II.10: Orbit of ⇤2 with scalar product 0 under Co0
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• In the fifth case x ¨ y “ ´8, and y is in ⇤2. Then, there are two possible shapes

for y. If y has shape ((´28) 016), then y can be expressed as ´2vK"C where

(K P C8, |K X ti, ju| “ 1) and (ti, ju X C “ H, C P C ), from figure I.5.1 there

are 176 octads that contain i, but not j and 27 possible sign changes. Similarly

for ´2vK where |K X ti, ju| “ 1, there are 176 octads that contain j, but not

i and 27 possible sign changes. Now, if y has shape ((´31) 123) then y can be

expressed as pv⌦ ´ 4viq"C where (ti, ju X C “ H, C P C ), there are two possible

positions for 3 and 210 possible sign changes. Therefore, there are 2 ¨ 210 vectors,

see table II.11.

Orbit Length

((´28) 016) 2 ¨ 176 ¨ 27

((´31) 123) 2 ¨ 210

Table II.11: Orbit of ⇤2 with scalar product (´8) under Co0

• In the sixth case x ¨y “ ´16, and y is in ⇤2. Then there are three possible shapes

for y. If y has shape ((´42) 022) then y can be expressed as ´4vj ˘ 4vk, where

k is not equal to j so there are 22 places which k can fall and two possible sign

changes. Therefore, there are 22 ¨ 2 vectors. Or, ˘4vh ´ 4vj, where h is not equal

to i, there are 22 places which h can fall and two possible sign changes. Therefore,

there are 22 ¨ 2 vectors. If y has shape ((´28) 016) then y can be expressed as

´2vK"C , where (ti, ju Ä K P C8) and (ti, ju X C “ H, C P C ). From figure

I.5.1 there are 77 octads that intersect in two points say i, j, and 32 possible sign

changes. Hence, there are 77 ¨ 32 vectors. If y has shape ((´31) 123) then y can

be expressed as pv⌦ ´ 4viq"C where j is in C that is in C , there are two possible

positions for 3 and 210 possible sign changes. Therefore, there are 2 ¨ 210 vectors,

see table II.12.

• In the seventh case x ¨ y “ ´32, and y is in ⇤2. Then the only way for choosing



51 II.2. The first Conway group Co1

Orbit Length

((´42) 022) 2 ¨ 2 ¨ 22

((´28) 016) 32 ¨ 77

((´31) 123) 2 ¨ 210

Table II.12: Orbit of ⇤2 with scalar product (´16) under Co0

y which is in ⇤2 is p´xq

y “ ´4vi ´ 4vj.

Notice that, these are the only possible scalar products for any two vectors x and y

that are in ⇤2. Thus, the zero Conway group Co0 is a transitive on ordered pairs of

vectors in ⇤2.

Definition II.2.3. The set of diameters of ⇤2, which has order |⇤2|{2 “ 98280 diameters, is

denoted by ⇤2. A diameter is a pair tx,´xu, where x is in ⇤2.

Corollary II.2.4. The first Conway group Co1 acts on the 98280 diameters in such a way

that the stabiliser of any diameter has orbit of order 1, 4600, 47104 or 46575.

Proof. We need to show that the length of orbit of an element tx,´xu in ⇤2 is 1,

4600, 47104 or 46575 by using that Co0 is transitive on ordered pairs of vectors of ⇤2

with any given scalar product ˘32, ˘16, ˘8 or 0, respectively. Let us assume that

x “ 4vi ` 4vj and G “ Co1. If x ¨ y “ 32 then we have y “ x and tx,´xu"⌦ “ t´x, xu.

Thus,

tx,´xu
G

“ t4vi ` 4vj,´4vi ´ 4vju.

If x ¨ y “ 16 then by using Theorem II.2.2 there are four possibilities for y which are

4vi ˘4vh, where ph ‰ jq, ˘4vk `4vj, where pk ‰ iq, 2vk"C , where pti, ju Ä K, K P C8q,

pti, ju X C “ H, C P C q and p4vi ´ v⌦q"C , where j is in C that is in C ). Thus,

tx,´xu
G

“ tt4vi ` 4vh,´4vi ´ 4vhu, t4vi ´ 4vh,´4vi ` 4vhu, t4vk ` 4vj,´4vk ´ 4vju,

t´4vk `4vj, 4vk ´4vju, t2vK"C ,´2vK"Cu , tp4vi ´v⌦q"C , p´4vi `v⌦q"Cuu. From tables
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II.8 and II.12 these are 4600 pairs. If x¨y “ 8 then by using Theorem II.2.2 there are two

possibilities for y which are 2vK"C , where (K P C8, |K X ti, ju| “ 1), (ti, ju X C “ H,

C P C ), and p4vi ´ v⌦q"C , where (ti, ju X C “ H, C P C ). Hence,

tx,´xu
G

“ tt2vK"C ,´2vK"Cu, tp4vi ´ v⌦q"C , p´4vi ` v⌦q"Cuu.

From tables II.9 and II.11 these are 47104 pairs.

If x ¨ y “ 0 then by using Theorem II.2.2 again there are four possibilities for choosing

y which are ˘p4vi ´ 4vjq, ˘p4vk ` 4vhq, where pk, h ‰ i, jq, 2vK"C , where (ti, ju Ä

K,K P C8), (C P C ), 2vK1"C where (ti, ju X K 1
“ H, K 1

P C8), (|ti, ju X C| “ 1) and

p4vk ´v⌦q"C , where (k ‰ i, j), (|ti, ju XC| “ 1). Therefore, tx,´xu
G

“ tt˘p4vi ´4vjq,

¯p4vi´4vjqu, t2vK"C ,´2vK"Cu, t2vK1"C , ´2vK1"Cu, tp4vi´v⌦q"C , p´4vi`v⌦q"Cu. From

table II.10 these are 93150{2 “ 46575 pairs.

Corollary II.2.5. The first Conway group Co1 acts primitively on ⇤2.

Proof. By transitivity of Co0 on ⇤2 in Theorem II.1.15, for any non-trivial subset �

of ⇤2, we can find an element � which is in Co0, such that �X�� † "⌦ °‰ H. Thus,

Co1 acts primitively on ⇤2.

Theorem II.2.6. There is no � in Co0 such that � has prime order greater then 23.

Corollary II.2.7. There is no � in Co0 such that � has order 13 ¨ 23.

Theorem II.2.8. The first Conway group Co1 is a simple group.

Proof. We need to show that Co1 has no normal subgroups, if Co1 is not a simple group

then Co1 would have a normal subgroup say K, then t1,´1u Ä K Ä Co0, K must

act transitively on ⇤2. Otherwise, its orbits would be imprimitive sets for Co1 which

is a contradiction with Corollary II.2.5, this implies that the order of K is divisible by

13. By using the Frattini argument, we have Co0 “ NCo0pP q K, where P is a Sylow

13-subgroup of K. Now, either K or NCo0pP q has an element of order 23, say �, if �

is in NCo0pP q, then Co0 has a cyclic subgroup of order 13 ¨ 23 which is a contradiction
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with Corollary II.2.7. This means that � must be in K, so KXN is a normal subgroup

of N with order divisible by 23. Hence, this group is N but N is a maximal subgroup,

so K “ N . However, this is a contradiction with Theorem II.1.11 which is N is not a

normal subgroup of Co0. Thus, Co1 is a simple group.

II.2.2 The small Conway groups

Definition II.2.9. The second Conway group Co2 is one of the twenty-six sporadic groups

and it was discovered by John H. Conway around 1968 [Wil] as the group of automorphisms

of the Leech lattice ⇤. In particular, it is the stabiliser group of a vector which has type two

and it has order |Co2| “ |Co1|{98280 “ 217 ¨ 36 ¨ 52 ¨ 7 ¨ 11 ¨ 23.

Theorem II.2.10. There are 46575 vectors in ⇤2 such that they have scalar product 0 with

x “ 4v8 ´ 4v0.

Proof. Let y be in ⇤2 and y ¨ x “ 0 then, there are three possible shapes for y.

• If y has (42 022) then y can be expressed as ˘p4v8 ˘ 4v0q which is a vector. Or,

as ˘p4vi ˘ 4vjq, where i and j are not equal to either 8 or 0, there are 22 places

in which i can fall and 21 places in which j can fall. Hence, there are 22 ¨ 21

vectors.

• If y has (28 016) then y can be expressed as 2vK"C , where (ti, ju Ñ K P C8) and

(C X ti, ju “ H, C P C ). From figure I.5.1 there are 77 octads which intersect in

two points say i, j and 25 possible sign changes. Thus, there are 77 ¨ 25 vectors.

Or, as y “ 2vK"C , where pK X ti, ju “ H, K P C8q, and C is in C . Again from

figure I.5.1, there are 330 octads which do not intersect in two points let say i, j

and 26 possible sign changes.

• If y has ((´31) 123) then y can be expressed as pv⌦ ´4vkq"C , where k is not equal

to either 0 or 8. There are 22 places in which k can fall and 210 possible sign

changes. Hence, there are 22 ¨ 210 vectors. Thus, we get table II.13.
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Orbit Length

(42 022) 1 ` 21 ¨ 22

(28 016) 77 ¨ 25 ` 330 ¨ 26

((´31) 123) 22 ¨ 210

Table II.13: The 46575 vectors that are in ⇤2 and orthogonal with 4v8 ´ 4v0

Remark II.2.11. Notice that, from Theorem II.1.10 the stabiliser of 4v8´4v0 is 210 : M22 : 2

which has index 46575 in Co2. It is a maximal subgroup of Co2 and generated by conjugates

of abelian group 210. Hence, by using Iwasawa’s Lemma we have that the second Conway

group Co2 is a simple group.

Subgroup Order Index

PSU6p2q : 2 216 ¨ 36 ¨ 5 ¨ 7 ¨ 11 2300

210 : M22 : 2 218 ¨ 32 ¨ 5 ¨ 7 ¨ 11 46575

McL 27 ¨ 36 ¨ 53 ¨ 7 ¨ 11 47104

21`8 : S6p2q 218 ¨ 34 ¨ 5 ¨ 7 56925

HS : 2 210 ¨ 32 ¨ 53 ¨ 7 ¨ 11 476928

p24 ˆ 2p1`6q
qA8 217 ¨ 32 ¨ 5 ¨ 7 1024650

PSU4p3q.D8 210 ¨ 36 ¨ 5 ¨ 7 1619200

24`10
pS5 ˆ S3q 218 ¨ 32 ¨ 5 3586275

M23 27 ¨ 32 ¨ 5 ¨ 7 ¨ 11 ¨ 23 4147200

31`4
¨ 21`4S5 28 ¨ 36 ¨ 5 45337600

51`2 : 4S4 25 ¨ 3 ¨ 53 3525451776

Table II.14: Maximal subgroups of the second Conway group Co2

Definition II.2.12. The third Conway group Co1 is one of the twenty-six sporadic groups

and it was discovered by John H. Conway around 1968 [Wil] as the group of automorphisms

of the Leech lattice ⇤. In particular, it is the stabiliser group of a vector which has type

three, and it has order|Co3| “ |Co1|{8386560 “ 210 ¨ 37 ¨ 53 ¨ 7 ¨ 11 ¨ 23.
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Theorem II.2.13. The third Conway group Co3 is a doubly transitive on 276 letters.

Proof. Let x be in ⇤3 which has shape (51 123), y, z be in ⇤2, and tz, yu be a pair such

that z ` y “ x, then there are 23 vectors, let say y of shape (42 022) such that the first

entry say y8 is not zero. Moreover, for shape (28 016), where y8 is not zero, there are

253 vectors, since that from figure I.5.1, the number of octads intersect in one point,

let say y8 is 253 octads. Now, let ty1, z1
u be one of these pairs such that either y ´ y1

or z ´ y1 for each other pairs tz, yu. By assuming transitivity of Co0 on type 322 and

tetrahedra 322222, we get that Co3 is a doubly transitive on 276 letters.

Theorem II.2.14. The stabiliser of a point of Co3 on 276 letters is ¨322.

Proof. Let our point be y “ 4v8 ` 4v0 then it fixes under M22 by fixing 8 and 0.

Hence, there are four orbits for 276 pairs under M22 which has size 1, 22, 77 and 176

which is contained in

1. M23 which fall into 1 ` 22 and 77 ` 176 orbits.

2. McLaughlin group (¨322) which fall into 1 and 22 ` 77 ` 176 orbits.

3. Higman-Sims group (¨332) which fall into 1 ` 22 ` 77 and 176 orbits.

Theorem II.2.15. The third Conway group Co3 is a simple group.

Proof. Let S be a normal subgroup of Co3, since McL : 2 is the stabiliser of Co3 then

either S X McL “ S or H X McL “ t1u. If S is a subset of McL then S has order

276 “ 23 ¨ 3 ¨ 2. This implies that S has a 23-sylow subgroup and it is abelian, let

say K. So, K is a normal subgroup of M23, but M23 is a simple group which is a

contradiction. Now, for the second case S would have index two in Co3, this implies

that the 552 vectors as above in Theorem II.2.13 and we may assume our point x has

shape (51 123). Then the 552 vectors are as follows: 23 have shape (42 022), where the
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first entry, say y8 is four, 23 have shape ((´3) 123), where y8 is one, 253 vectors have

shape (28 016), where y8 is two, and 253 have shape (3 (´17) 116), where y8 is three,

they fall into two di↵erent sets with size 276 under S, but this is impossible since than

the scalar product would have a fixed value for any two vectors in the same set.

Subgroup Order Index

McL : 2 28 ¨ 36 ¨ 53 ¨ 7 ¨ 11 276

HS 29 ¨ 32 ¨ 53 ¨ 7 ¨ 11 11178

PSU4p3q : 22 29 ¨ 36 ¨ 5 ¨ 7 37950

M23 27 ¨ 32 ¨ 5 ¨ 7 ¨ 11 ¨ 23 48600

35 : p2 ˆ M11q 25 ¨ 37 ¨ 5 ¨ 11 128800

2 ¨ S6p2q 210 ¨ 34 ¨ 5 ¨ 7 170775

PSU3p5q : S3 25 ¨ 33 ¨ 53 ¨ 7 655776

31`4 : 4S6 26 ¨ 37 ¨ 5 708400

24 ¨ A8 210 ¨ 32 ¨ 5 ¨ 7 1536975

L3p4q ¨ D12 28 ¨ 33 ¨ 5 ¨ 7 2049300

2 ˆ M12 27 ¨ 33 ¨ 5 ¨ 11 2608200

22.r27.32s.S3 210 ¨ 33 17931375

S3 ˆ L2p8q : 3 24 ¨ 34 ¨ 7 54648000

A4 ˆ S5 25 ¨ 32 ¨ 5 344282400

Table II.15: Maximal subgroups of the third Conway group Co3

Definition II.2.16. The number of orbits of the point stabiliser is called the rank.

II.2.3 The Hall-Janko group J2

The Hall-Janko group (J2) is a simple group which is one of the twenty-six sporadic

groups, and it was discovered by Hall-Janko in 1967 [Gal] as a rank three permutation

group on 100 points . The stabiliser of J2 is PSU3p3q, and J2 has order 27 ¨ 33 ¨ 52 ¨ 7.
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Subgroup Order Index

PSU3p3q 25 ¨ 33 ¨ 7 100

3 ¨ PGL2p9q 24 ¨ 33 ¨ 5 280

21`4 : A5 27 ¨ 3 ¨ 5 315

21`4 : p3 ˆ S3q 27 ¨ 32 525

A4 ˆ A5 24 ¨ 32 ¨ 5 840

A5 ˆ D10 23 ¨ 3 ¨ 52 1008

L3p2q : 2 24 ¨ 3 ¨ 7 1800

52 : D12 22 ¨ 3 ¨ 52 2016

A5 22 ¨ 3 ¨ 5 10080

Table II.16: Maximal subgroups of the Janko group J2

II.2.4 The Suzuki group Suz

The Suzuki group (Suz) is a simple group which is one of the twenty-six sporadic groups

and it was discovered by Suzuki in 1969 [Gal] as a rank three permutation group on

1782 points. The stabiliser of Suz is G2p4q, and Suz has order 213 ¨ 37 ¨ 52 ¨ 7 ¨ 11 ¨ 13.

Notice that, the Suzuki group (Suz) does not relate to the Suzuki groups of Lie type.
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Subgroup Order Index

G2p4q 212 ¨ 33 ¨ 52 ¨ 7 ¨ 13 1782

32 ¨ PSU4p3q : 2 28 ¨ 37 ¨ 5 ¨ 7 22880

PSU5p2q 210 ¨ 35 ¨ 5 ¨ 11 32760

21`6
¨ PSU4p2q 213 ¨ 34 ¨ 5 135135

35 : M11 24 ¨ 37 ¨ 5 ¨ 11 232960

J2 : 2 28 ¨ 33 ¨ 52 ¨ 7 370656

24`6 : 3A6 213 ¨ 33 ¨ 5 405405

pA4 ˆ L3p4qq : 2 29 ¨ 33 ¨ 5 ¨ 7 926640

22`8 : pA5 ˆ S3q 213 ¨ 32 ¨ 5 1216215

M12 : 2 27 ¨ 33 ¨ 5 ¨ 11 2358720

32`4 : 2pA´4 ˆ 22q.2 26 ¨ 37 3203200

pA6 ˆ A5q ¨ 2 26 ¨ 33 ¨ 52 10378368

p32 : 4 ˆ A6q ¨ 2 26 ¨ 34 ¨ 5 17297280

L3p3q : 2 (two) 25 ¨ 33 ¨ 13 39916800

L2p25q 23 ¨ 3 ¨ 52 ¨ 13 57480192

A7 23 ¨ 32 ¨ 5 ¨ 7 177914880

Table II.17: Maximal subgroups of the Suzuki group Suz
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Subgroup Order Index

Co2 217 ¨ 36 ¨ 52 ¨ 7 ¨ 11 ¨ 23 98280

3 ¨ Suz : 2 214 ¨ 38 ¨ 52 ¨ 7 ¨ 11 ¨ 13 1545600

211 : M24 221 ¨ 33 ¨ 5 ¨ 7 ¨ 11 ¨ 23 8282375

Co3 210 ¨ 37 ¨ 53 ¨ 7 ¨ 11 ¨ 23 8386560

21`8
¨ O`

8 p2q 221 ¨ 35 ¨ 52 ¨ 7 46621575

PSU6p2q : S3 216 ¨ 37 ¨ 5 ¨ 7 ¨ 11 75348000

pA4 ˆ G2p4qq : 2 215 ¨ 34 ¨ 52 ¨ 7 ¨ 13 688564800

22`12 : pA8 ˆ S3q 221 ¨ 33 ¨ 5 ¨ 7 2097970875

24`12
¨ pS3 ˆ 3S6q 221 ¨ 34 ¨ 5 4895265375

32 ¨ PSU4p3q.D8 210 ¨ 38 ¨ 5 ¨ 7 17681664000

36 : 2M12 27 ¨ 39 ¨ 5 ¨ 11 30005248000

pA5 ˆ J2q : 2 210 ¨ 34 ¨ 53 ¨ 7 57288591360

31`4 : 2PSU4p2q : 2 ¨ 2 28 ¨ 39 ¨ 5 165028864000

pA6 ˆ PSU3p3qq ¨ 2 29 ¨ 35 ¨ 5 ¨ 7 954809856000

33`4 : 2pS4 ˆ S4q 27 ¨ 39 1650288640000

A9 ˆ S3 27 ¨ 35 ¨ 5 ¨ 7 3819239424000

pA7 ˆ L2p7qq : 2 27 ¨ 33 ¨ 5 ¨ 72 4910450688000

pD10 ˆ pA5 ˆ A5q.2q.2 27 ¨ 32 ¨ 53 28873450045440

51`2 : GL2p5q 25 ¨ 3 ¨ 54 69296280109056

53 : p4 ˆ A5q.2 25 ¨ 3 ¨ 54 69296280109056

72 : p3 ˆ 2A4q 23 ¨ 32 ¨ 72 1178508165120000

52 : 2A5 23 ¨ 3 ¨ 53 1385925602181120

Table II.18: Maximal subgroups of the first Conway group Co1
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Group Describe

GLnpqq The general linear group with n-dimensional over GF pqq

PGLnpqq The projective linear group with n-dimensional over GF pqq

SLnpqq The special linear group with n-dimensional over GF pqq

PSLnpqq “ Ln|pqq The projective special linear group with n-dimensional over GF pqq

GUnpq2q The general unitary group with n-dimensional over GF pqq

SUnpq2q The special unitary group with n-dimensional over GF pqq

PSUnpq2q “ Unpq2q The projective special unitary group with n-dimensional over GF pqq

GOnpqq The orthogonal group with n-dimensional over GF pqq

SOnpqq The special orthogonal group with n-dimensional over GF pqq

PSOnpqq The projective special orthogonal group, n-dimensional over GF pqq

Pn or E An elementary of order pn

P 1`2n An extraspecial group of order p1`2n

Q8 The quaternion group

Dn A dihedral group of order 2n

An An alternating group of degree n

Sn A symmetric group of dearee n

Anpqq The Chevalley group of degree n over GF pqq, n • 1

Bnpqq The Chevalley group of degree n over GF pqq, n • 2

Cnpqq The Chevalley group of degree n over GF pqq, n • 3

Dnpqq The Chevalley group of degree n over GF pqq, n • 4

G2pqq The Chevalley group of degree 2 over GF pqq

Snpqq The symplectic group with 2n-dimensional over GF pqq

S! The stabiliser of centroid of a set S

˚S The stabiliser of a set S

¨S The stabiliser of vertex of a set S

¨n The stabiliser of vector of type n

¨nab The stabiliser of any vectors whose di↵erence is a vector of type n

¨abc The stabiliser of a triangle of type a, b, c

A ¨ B An (split or non-split) extension of the group A by the group B

A : B A split extension of the group A by the group B

A ¨ B A non-split extension of the group A by the group B

C The subspace of Pp⌦q, C “ tX P Pp⌦q : |X| • 8u

O An octad

Table II.19: List of group notations
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Figure II.2.1: Genetic relation between sporadic finite simple groups
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Group Describe Order

M11 The Mathieu group 24 ¨ 32 ¨ 5 ¨ 11

M12 The Mathieu group 26 ¨ 33 ¨ 5 ¨ 11

J1 The Janko group 23 ¨ 3 ¨ 5 ¨ 7 ¨ 11 ¨ 19

M22 The Mathieu group 27 ¨ 32 ¨ 5 ¨ 7 ¨ 11

J2 “ HJ The Hall-Janko group 27 ¨ 33 ¨ 52 ¨ 7

M23 The Mathieu group 27 ¨ 32 ¨ 5 ¨ 7 ¨ 11 ¨ 23

HS The Higman-Sims group 29 ¨ 32 ¨ 53 ¨ 7 ¨ 11

J1 The Janko group 27 ¨ 35 ¨ 5 ¨ 17 ¨ 19

M24 The Mathieu group 210 ¨ 33 ¨ 5 ¨ 7 ¨ 11 ¨ 23

He The Held group 29 ¨ 35 ¨ 52 ¨ 7 ¨ 11 ¨ 13

McL The McLaughlin group 27 ¨ 36 ¨ 53 ¨ 7 ¨ 11

Ru The Rudvalis group 214 ¨ 33 ¨ 53 ¨ 7 ¨ 13 ¨ 29

Suz The Suzuki group 213 ¨ 37 ¨ 52 ¨ 7 ¨ 11 ¨ 13

ON The O’Nan group 29 ¨ 34 ¨ 5 ¨ 73 ¨ 11 ¨ 19 ¨ 31

Co3 The Conway group 210 ¨ 37 ¨ 53 ¨ 7 ¨ 11 ¨ 23

Co2 The Conway group 218 ¨ 36 ¨ 53 ¨ 7 ¨ 11 ¨ 23

Fi22 The Fischer group 217 ¨ 39 ¨ 52 ¨ 7 ¨ 11 ¨ 13

HN The Harada-Norton group 214 ¨ 36 ¨ 56 ¨ 7 ¨ 11 ¨ 19

Fi23 The Fischer group 218 ¨ 313 ¨ 52 ¨ 7 ¨ 11 ¨ 13 ¨ 17 ¨ 23

Co1 The Conway group 221 ¨ 39 ¨ 54 ¨ 72 ¨ 11 ¨ 13 ¨ 23

Th The Thompson group 215 ¨ 310 ¨ 53 ¨ 72 ¨ 13 ¨ 19 ¨ 31

Ly The Lyons group 28 ¨ 37 ¨ 56 ¨ 7 ¨ 11 ¨ 31 ¨ 37 ¨ 67

Fi24 The Fischer group 221 ¨ 316 ¨ 52 ¨ 73 ¨ 11 ¨ 13 ¨ 17 ¨ 23 ¨ 29

J4 The Janko group 221 ¨ 33 ¨ 5 ¨ 7 ¨ 113 ¨ 23 ¨ 29 ¨ 31 ¨ 37 ¨ 43

B The Baby monster group 241 ¨ 313 ¨ 56 ¨ 72 ¨ 11 ¨ 13 ¨ 17 ¨ 19 ¨ 23 ¨ 31 ¨ 47

M The Monster group 246 ¨ 320 ¨ 59 ¨ 76 ¨ 112 ¨ 133 ¨ 17 ¨ 19 ¨ 23 ¨ 29 ¨ 31 ¨ 41 ¨ 47 ¨ 59 ¨ 71

Table II.20: The twenty-six sporadic groups
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