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Figure 1: Algebraic structure

A nonempty set S′ with binary operator (·)
is a semigroup (S′, ·) if for all g, h, k ∈ S′

1. g · h ∈ S′, and

2. g · (h · k) = (g · h) · k.

A nonempty set S with binary operator (+)

is a group (S,+) if for all g, h, k ∈ S

1. g + h ∈ S,

2. g + (h+ k) = (g + h) + k,

3. ∃ e ∈ S s.t. e+ g = g + e = g, and

4. ∃g−1 ∈ S s.t. g + g−1 = g−1 + g = e.

5. S is an abelian if g + h = h+ g.

A nonempty set V with two binary operators

(+) and (×) is a vector space over a field C if

for all λ1, λ2 ∈ C and v, u ∈ V.

1. (V,+) is an abelian group,

2. λ1 × v ∈ V,
3. λ1 × (u+ v) = λ1 × u+ λ1 × v,

4. (λ1 + λ2)× v = λ1 × v + λ2 × v,
5. λ1 × (λ2 × v) = (λ1λ2)× v, and

6. 1× v = v.
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Background
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Figure 2: Rings and fields structures

Definition 1
A ring R is a set on which two binary operations are defined
addition (+) and multiplication (·) such that

1 (R,+) is an abelian group,
2 (R, ·) is semigroup with an identity element, and
3 The distributive laws hold for all a, b, c ∈ R

a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c.

We say K is a field if K satisfies 1, 3 and (K\{0} = K×, ·) is
an abelian group.
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Figure 3: K-algebras structure

Definition 2
Let K be a field and D be a set on which three operations are
defined, addition, multiplication, and multiplication by a
scalar such that

1 (D,+, ·) is a ring,

2 (D,+,×K) is a vector space over K,

3 (λa) b = a (λb) = λ (ab) for all λ ∈ K and a, b ∈ D,
then D is called a K-algebra
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Poisson algebras
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Figure 4: Poisson algebras structure

Definition 3
A (commutative) K-algebra (D, +, ·) is called a Poisson
algebra if there exists bilinear product {-, -} on D, called a
Poisson bracket, such that (D, {-, -}) is

1 {a, b} = −{b, a} for all a, b ∈ D (anti-commutative),

2 {a, {b, c}}+ {b, {c, a}}+ {c, {a, b}} = 0 for all a, b, c ∈ D
(Jacobi identity), and

3 {a · b, c} = {a, c} · b+ a · {b, c} for all a, b, c ∈ D (Leibniz
rule).
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Poisson ideals and Poisson prime ideals
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Figure 5: Poisson ideals structure

Definition 4
Let D be a Poisson algebra. A subset I of D is a Poisson ideal
of D if

1 I is an ideal of algebra D, and
2 {d, a} ∈ I for all d ∈ D and a ∈ I.

Moverover, the algebra D is a simple Poisson algebra if the only
Poisson ideals of D are D and 0.

Definition 5
Let D be a Poisson algebra. A Poisson ideal P is a Poisson
prime ideal of D if the following satisfies:

IJ ⊆ P ⇒ I ⊆ P or J ⊆ P

where I and J are Poisson ideals of D. Moreover, a set of all
Poisson prime ideals of D is called the Poisson spectrum of D
and is denoted by PSpec(D).
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The Poisson centre, Derivations and Poisson derivations

Definition 6
Let D be a Poisson algebra then

PZ(D) := {a ∈ D | {a, d} = 0 for all d ∈ D}

is called the Poisson centre of D.

Definition 7
Let D be a associative Poisson algebra over K. A K-linear map α : D → D is called a
derivation (respectively, Poisson derivation) on D if α satisfies 1 (respectively, satisfies 1
and 2) of the following conditions:

1 α(a · b) = α(a) · b+ a · α(b) for all a, b ∈ D.

2 α({a, b}) = {α(a), b}+ {a, α(b)} for all a, b ∈ D.

A set of all derivations (respectively, Poisson derivations) on D denoted by DerK(D)

(respectively, PDerK(D)).
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The construction

Theorem 8 [Oh2, Theorem 1.1]

Let D be a Poisson algebra over K and α, δ be K-linear maps on D. Then the polynomial
ring D[y] becomes a Poisson algebra with Poisson bracket:

{a, y} = α(a)y + δ(a) for all a ∈ D (1)

if and only if α is a Poisson derivation on D and δ is a derivation on D such that

δ({a, b})− {δ(a), b} − {a, δ(b)} = δ(a)α(b)− α(a)δ(b) for all a, b ∈ D. (2)

The Poisson algebra D[y] is denoted by D[y;α, δ] and if δ is zero then it is denoted by
D[y;α].

(D, {-, -})
(α ∈ PDer(D), δ ∈ Der(D)) (2)

(D[y], (1)) D[y;α, δ]
α, δ

Proof.
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Lemma 9 [Oh2, Lemma 1.3]

Let D be a Poisson algebra over K, c ∈ K,u ∈ D and α, β are Poisson derivations such
that

αβ = βα and {d, u} = (α+ β)(d)u for all d ∈ D (3)

Then the polynomial ring D[y, x] becomes a Poisson algebra with Poisson bracket

{d, y} = α(d)y, {d, x} = β(d)x and {y, x} = cyx+ u (4)

for all d ∈ D. This Poisson algebra is denoted by A = (D;α, β, c, u) or
A = D[y;α, 0][x;β, δ′ := u d

dy
].

(D, {-, -}) (D[y], (1))

D[y;α]

α, δ = 0
(D[y][x], (4))

β, β(y) = cy

δ′ = u d
dy

D[y;α][x;β, δ′]

By Theorem 8 By Theorem 8
Proof.

(D;α, β, c, u)
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The new Poisson algebra class A = (K[t];α, β, c, u)

We assume that

• K is an algebraically closed field with char(K) = 0,

• D is a polynomial ring in one variable K[t] with trivial Poisson bracket, i.e. {a, b} = 0
for all a, b ∈ K[t], and

• c ∈ K.

If K-linear maps α and β are Poisson derivations on K[t], i.e. α, β ∈ PDerK(K[t]) =

DerK(K[t]) = K[t]∂t such that

α = f∂t, β = g∂t, where ∂t =
d

dt
, for some f, g ∈ K[t].

Then by (3) in Lemma 9

0 = {d, u} = (α+ β)(d)u for all d ∈ D

u ∈ PZ(K[t]) = K[t].

(α+ β)u = 0.
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Lemma 10

Let K[t] be the polynomial Poisson algebra with trivial Poisson bracket and α, β are in
DerK(K[t]) such that α = f∂t 6= 0 and β = g∂t 6= 0 then

αβ = βα if and only if g =
1
λ
f for some λ ∈ K×.

This implies that precisely one of the three cases holds:

(Case I: α+ β = 0 and u = 0), (Case II: α+ β = 0 and u 6= 0) or (Case III: α+ β 6= 0 and u = 0) .
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The classification of Poisson algebra class A, so far
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Figure 6: Structure of class
A of Poisson algebras
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The first case

Case I: α + β = f∂t +
1
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Figure 7: Structure of the first

case of class A of Poisson algebras

Case I:
If α+ β = f∂t +

1
λ
f∂t = 0 for some λ ∈ K×,

f ∈ K[t], u = 0 and c ∈ K. Notice that,
f∂t +

1
λ
f∂t = 0, implies that there are two

subcases: f = 0 and λ = −1, see figure 7.

Case I.1:
If f = 0, i.e. α = β = 0 and u = 0
then A1 = (K[t]; 0, 0, c, 0) is a Poisson algebra
with Poisson bracket

{t, y} = 0, {t, x} = 0 and {y, x} = cyx. (5)

There are two subcases: c = 0 and c ∈ K×.
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where λ ∈ K, µ ∈ K×,
Iqq ∈ IrrmK[t, x] and Ipp ∈ IrrmK[t, y]

Figure 8: The containment information between Poisson prime ideals of A3

Case I.1.1:
If in addition, c = 0 then the polynomial
Poisson algebra A2 = (K[t]; 0, 0, 0, 0) has
trivial Poisson structure and the Poisson
spectrum of A2 is the spectrum
of a polynomial ring in
three variables, i.e.

PSpec(A2) = Spec(K[t, x, y]).

Case I.1.2:
If in addition, c ∈ K× then
A3 = (K[t]; 0, 0, c, 0) is a Poisson algebra
with Poisson bracket (5). In particular,

A3 = K[t]⊗K[x, y]

is a tensor product of two Poisson algebras:

(K[t], {-, -} = 0) and (K[x, y], {y, x} = cyx).

Then we found PSpec(A3), see figure 8.
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