

Poisson algebras Non-commutative algebras

Maram Alossaimi

Sheffield University, School of Mathematics and Statistics Supervisor: Prof. Vladimir Bavula

LMS Graduate Student Meeting

8 November 2021

E 5 4 E

A nonempty set S' with binary operator (\cdot) is a semigroup (S', \cdot) if for all $g, h, k \in S'$

1. $g \cdot h \in S'$, and 2. $g \cdot (h \cdot k) = (g \cdot h) \cdot k$.

A nonempty set S with binary operator (+) is a group (S, +) if for all g, h, k \in S 1. g + h \in S, 2. g + (h + k) = (g + h) + k, 3. $\exists e \in$ S s.t. e + g = g + e = g, and 4. $\exists g^{-1} \in$ S s.t. $g + g^{-1} = g^{-1} + g = e$. 5. S is an abelian if g + h = h + g. A nonempty set V with two binary operators

(+) and (×) is a vector space over a field \mathbb{C} if for all $\lambda_1, \lambda_2 \in \mathbb{C}$ and $v, u \in V$.

- 1. (V, +) is an abelian group,
- $2. \ \lambda_{\scriptscriptstyle 1} \times v \in V,$
- 3. $\lambda_1 \times (u + v) = \lambda_1 \times u + \lambda_1 \times v$,
- 4. $(\lambda_1 + \lambda_2) \times v = \lambda_1 \times v + \lambda_2 \times v$,
- 5. $\lambda_1 \times (\lambda_2 \times v) = (\lambda_1 \lambda_2) \times v$, and
- 6. $1 \times v = v$.

Figure 1: Algebraic structure

Outline

1 Background

2 Poisson algebras

- Poisson ideals and Poisson prime ideals
- The Poisson centre, Derivations and Poisson derivations

3 The construction

The new Poisson algebra class A The classification of Poisson algebra class A The first case

5 References

ヨト イヨト ヨヨ のへの

Background

Definition 1

2

A $ring\ R$ is a set on which two binary operations are defined addition (+) and multiplication (\cdot) such that

$$(R, \cdot)$$
 is semigroup with an identity element, and

3 The distributive laws hold for all
$$a, b, c \in R$$

$$a \cdot (b+c) = a \cdot b + a \cdot c$$
 and $(a+b) \cdot c = a \cdot c + b \cdot c$.

We say K is a field if K satisfies 1, 3 and $(K \setminus \{0\} = K^{\times}, \cdot)$ is an abelian group.

Figure 2: Rings and fields structures

Definition 2

Let K be a field and D be a set on which three operations are defined, addition, multiplication, and multiplication by a scalar such that

(
$$D, +, \cdot$$
) is a ring.

2 $(D, +, \times_K)$ is a vector space over K,

3
$$(\lambda a) b = a (\lambda b) = \lambda (ab)$$
 for all $\lambda \in K$ and $a, b \in D$,

then D is called a K-algebra

ELE SQC

3 > 4 3 >

Definition 3

A (commutative) K-algebra $(D, +, \cdot)$ is called a *Poisson* algebra if there exists bilinear product $\{-,-\}$ on D, called a Poisson bracket, such that $(D, \{-,-\})$ is

$$1 \quad \{a,b\} = -\{b,a\} \text{ for all } a,b \in D \text{ (anti-commutative)},$$

2
$$\{a, \{b, c\}\} + \{b, \{c, a\}\} + \{c, \{a, b\}\} = 0$$
 for all $a, b, c \in D$
(Jacobi identity), and

3
$$\{a \cdot b, c\} = \{a, c\} \cdot b + a \cdot \{b, c\}$$
 for all $a, b, c \in D$ (Leibniz rule).

Poisson ideals and Poisson prime ideals

Definition 4

Let D be a Poisson algebra. A subset I of D is a $Poisson \ ideal$ of D if

- **1** I is an ideal of algebra D, and
- 2 $\{d, a\} \in I$ for all $d \in D$ and $a \in I$.

Moverover, the algebra D is a *simple Poisson* algebra if the only Poisson ideals of D are D and 0.

Definition 5

Let D be a Poisson algebra. A Poisson ideal P is a *Poisson* prime ideal of D if the following satisfies:

 $IJ\subseteq P\Rightarrow I\subseteq P \ \text{or} \ J\subseteq P$

where I and J are Poisson ideals of D. Moreover, a set of all Poisson prime ideals of D is called the *Poisson spectrum* of D and is denoted by PSpec(D).

The Poisson centre, Derivations and Poisson derivations

Definition 6

Let ${\cal D}$ be a Poisson algebra then

$$PZ(D) := \{ a \in D \mid \{a, d\} = 0 \text{ for all } d \in D \}$$

is called the $Poisson \ centre$ of D.

Definition 7

Let D be a associative Poisson algebra over K. A K-linear map $\alpha : D \to D$ is called a *derivation* (respectively, *Poisson derivation*) on D if α satisfies 1 (respectively, satisfies 1 and 2) of the following conditions:

2
$$\alpha(\{a,b\}) = \{\alpha(a),b\} + \{a,\alpha(b)\}$$
 for all $a,b \in D$.

A set of all derivations (respectively, Poisson derivations) on D denoted by $\text{Der}_K(D)$ (respectively, $\text{PDer}_K(D)$).

The construction

Theorem 8 [Oh2, Theorem 1.1]

Let D be a Poisson algebra over K and α , δ be K-linear maps on D. Then the polynomial ring D[y] becomes a Poisson algebra with Poisson bracket:

$$\{a, y\} = \alpha(a)y + \delta(a) \quad \text{for all } a \in D \tag{1}$$

if and only if α is a Poisson derivation on D and δ is a derivation on D such that

$$\delta(\{a,b\}) - \{\delta(a),b\} - \{a,\delta(b)\} = \delta(a)\alpha(b) - \alpha(a)\delta(b) \text{ for all } a,b \in D.$$

The Poisson algebra D[y] is denoted by $D[y; \alpha, \delta]$ and if δ is zero then it is denoted by $D[y; \alpha]$.

Proof.

$$\begin{array}{ccc} (D, \{\text{-},\text{-}\}) & \xrightarrow{\alpha, \ \delta} & (D[y], (1)) & D[y; \alpha, \delta] \\ & & (\alpha \in \operatorname{PDer}(D), \delta \in \operatorname{Der}(D)) \ (2) \end{array}$$

B A B A B B B A A A

Lemma 9 [Oh2, Lemma 1.3]

Let D be a Poisson algebra over K, $c \in K, u \in D$ and α, β are Poisson derivations such that

$$\alpha\beta = \beta\alpha \quad and \quad \{d, u\} = (\alpha + \beta)(d)u \quad for \ all \ d \in D \tag{3}$$

Then the polynomial ring D[y, x] becomes a Poisson algebra with Poisson bracket

$$\{d, y\} = \alpha(d)y, \quad \{d, x\} = \beta(d)x \quad and \quad \{y, x\} = cyx + u \tag{4}$$

for all $d \in D$. This Poisson algebra is denoted by $A = (D; \alpha, \beta, c, u)$ or $A = D[y; \alpha, \theta][x; \beta, \delta' := u \frac{d}{dy}].$

Proof.

By Theorem 8

$$(D, \{-,-\}) \xrightarrow{\alpha, \ \delta = 0} (D[y], (1)) \xrightarrow{\beta, \ \beta(y) = cy}{\delta' = u \frac{d}{dy}} (D[y][x], (4)) \qquad (D; \alpha, \beta, c, u)$$

$$D[y; \alpha] \qquad D[y; \alpha][x; \beta, \delta']$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のへで

The new Poisson algebra class $A = (K[t]; \alpha, \beta, c, u)$

We assume that

- K is an algebraically closed field with char(K) = 0,
- D is a polynomial ring in one variable K[t] with trivial Poisson bracket, i.e. $\{a, b\} = 0$ for all $a, b \in K[t]$, and
- $c \in K$.

If K-linear maps α and β are Poisson derivations on K[t], i.e. $\alpha, \beta \in \text{PDer}_K(K[t]) = \text{Der}_K(K[t]) = K[t]\partial_t$ such that

$$\alpha = f\partial_t, \quad \beta = g\partial_t, \text{ where } \partial_t = \frac{d}{dt}, \text{ for some } f,g \in K[t].$$

Then by (3) in Lemma 9

$$0 = \{d, u\} = (\alpha + \beta)(d)u \text{ for all } d \in D$$

$$(\alpha + \beta)u = 0.$$

Lemma 10

Let K[t] be the polynomial Poisson algebra with trivial Poisson bracket and α , β are in **Der**_K(K[t]) such that $\alpha = f\partial_t \neq 0$ and $\beta = g\partial_t \neq 0$ then

This implies that precisely one of the three cases holds:

(Case I: $\alpha + \beta = 0$ and u = 0), (Case II: $\alpha + \beta = 0$ and $u \neq 0$) or (Case III: $\alpha + \beta \neq 0$ and u = 0).

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖필 めんゆ

The classification of Poisson algebra class A, so far

The first case

Case I:
$$\alpha + \beta = f\partial_t + \frac{1}{\lambda}f\partial_t = (1 + \frac{1}{\lambda})f\partial_t = 0$$
 and $u = 0$

Case I:

If $\alpha + \beta = f\partial_t + \frac{1}{\lambda}f\partial_t = 0$ for some $\lambda \in K^{\times}$, $f \in K[t], u = 0$ and $c \in K$. Notice that, $f\partial_t + \frac{1}{\lambda}f\partial_t = 0$, implies that there are two subcases: f = 0 and $\lambda = -1$, see figure 7.

$\underline{\text{Case I.1:}}$

If f = 0, i.e. $\alpha = \beta = 0$ and u = 0then $A_1 = (K[t]; 0, 0, c, 0)$ is a Poisson algebra with Poisson bracket

 $\{t,y\} = 0, \ \{t,x\} = 0 \ \text{and} \ \{y,x\} = cyx.$

There are two subcases: c = 0 and $c \in K^{\times}$.

(5)

Case 1.1.1:

If in addition, c = 0 then the polynomial Poisson algebra $A_2 = (K[t]; 0, 0, 0, 0)$ has trivial Poisson structure and the Poisson spectrum of A_2 is the spectrum of a polynomial ring in three variables, i.e.

$$\operatorname{PSpec}(A_2) = \operatorname{Spec}(K[t, x, y]).$$

Case 1.1.2:

If in addition, $c \in K^{\times}$ then $A_3 = (K[t]; 0, 0, c, 0)$ is a Poisson algebra with Poisson bracket (5). In particular,

$$A_3 = K[t] \otimes K[x, y]$$

is a tensor product of two Poisson algebras:

$$(K[t], \{\text{-},\text{-}\} = 0) \quad \text{ and } \quad (K[x,y], \{y,x\} = cyx).$$

Then we found $PSpec(A_3)$, see figure 8.

Figure 8: The containment information between Poisson prime ideals of A_3

References

- [GoWa] K. R. Goodearl and R. B. Warfield. An introduction to noncommutative noetherian rings. 2nd ed. New York: Cambridge University Press. (2004), pages 1–85, 105–122 and 166–186.
 - [Bav] V. V. Bavula, The Generalized Weyl Poisson algebras and their Poisson simplicity criterion. Letters in Mathematical Physics, 110 (2020), 105–119.
 - [Oh2] S.-Q. Oh, Poisson polynomial rings. Communications in Algebra, 34 (2006) 1265–1277.
 - [Pre] A. Premet. Lie algebra, Lecture Notes in MATH 62112 at the University of Manchester, Manchester in Spring 2017, 1–41.
 - [Sta] T. Stafford. Noncommutative algebra, Lecture Notes in MATH 62041 at the University of Manchester, Manchester in Autumn 2016, 1–87.

Thank you for listening

Further resources

Poisson algebra applications :

• Skew polynomial rings.

[MyOh] N.-H. Myung and S.-Q. Oh, A construction of an Iterated Ore extension. arXiv:1707.05160v2 (2018).

- Poisson polynomial ring.
 - [Oh2] S.-Q. Oh, Poisson polynomial rings. Communications in Algebra, 34 (2006), 1265–1277.
- Poisson modules and Poisson enveloping algebras.
 - [Oh1] S.-Q. Oh, Poisson enveloping algebras. Communications in Algebra, 27 (1999), 2181–2186.
- Weyl algebras and generalised algebras.
 - [Bav] V. V. Bavula, The Generalized Weyl Poisson algebras and their Poisson simplicity criterion. Letters in Mathematical Physics, 110 (2020), 105–119.

Further resources

- Quantization and deformation algebras.
- [BPR] C. Beem, W. Peelaers and L. Rastelli, Deformation quantization and superconformal symmetry in three dimensions. *Comm. Math. Phys.* 354 (2017), 345–392.
- Semiclassical limits.
- [ChOh] E.-H. Cho and S.-Q. Oh, Semiclassical limits of Ore extensions and a Poisson generalized Weyl algebra. Lett. Math. Phys. 106 (2016), 997–1009.
- Star product and Poisson algebras.
 - [EtSt] P. Etingof and D. Stryker, Short star-products for filtered quantizations, I. arXiv:1909.13588v5 (2020).
- Poisson manifolds.
 - [Kon] M. Kontsevich, Deformation quantization of Poisson manifolds. arXiv:q-alg/9709040v1 (1997).
- Hamiltonian systems.