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Basic intro with a view towards other talks this and next week....

Plan of lectures:

▶ Lectures 1 and 2: Definition and examples of Poisson
manifolds; basic properties.

▶ Lecture 3: Lie algebroids and symplectic groupoids.

▶ Lecture 4: Dirac structures (basics, applications...).

⋄ Weinstein, “Local structure of Poisson manifolds”, JDG, 1983.

⋄ Books by Cannas da Silva– Weinstein, Dufour–Zung, Pichereau–
Laurent-Gengoux – Vanhaecke...

⋄ New book: “Lectures on Poisson geometry”, Crainic, Fernandes, Marcut.
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Outline for lectures 1 and 2:

▶ “The” Poisson bracket.

▶ Definitions and (classes of) examples.

▶ Basic theory (local structure, symplectic foliation, some
invariants).
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“The” Poisson bracket (1809)

In the context of classical (celestial) mechanics:
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Conserved quantities: f such that {H, f } = LXH
f = 0.

Many conserved quantities =⇒ “complete integrability”!

Poisson’s theorem:

{H, f } = 0, {H, g} = 0 =⇒ {H, {f , g}} = 0.

Jacobi identity (1842): Poisson bracket satisfies

{H, {f , g}}+ {g , {H, f }}+ {f , {g ,H}} = 0.

S. Lie (1880): Lie algebras, Lie groups...
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A. Lichnerowicz A. Weinstein

Why? Representation theory, Geometric mechanics (plasma physics),
Deformation quantization...
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Basic definitions

⋄ A Poisson bracket on M is {·, ·} : C∞(M)× C∞(M) → C∞(M):

▶ {f , g} = −{g , f },
▶ {f , {g , h}}+ {h, {f , g}}+ {g , {h, f }} = 0 (Jacobi)

▶ {f , gh} = {f , g}h + {f , h}g (Leibniz)

⋄ A Poisson manifold is (M, {·, ·})

⋄ Poisson map: ϕ : (M1, {·, ·}1) → (M2, {·, ·}2),

{f , g}2 ◦ ϕ = {f ◦ ϕ, g ◦ ϕ}1, ∀f , g ∈ C∞(M2)

Poisson diffeos, also interesting weaker notions...
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⋄ Hamiltonian vector field of f ∈ C∞(M): Xf = {f , ·},

LXf
g = {f , g} = −LXg f

If Xf = 0 we say that f is a Casimir.

Properties:

▶ LXf
f = {f , f } = 0,

▶ LXH
f = 0, LXH

g = 0 =⇒ LXH
{f , g} = 0,

▶ [Xf ,Xg ] = X{f ,g}.

The Poisson bracket is example of a Poisson structure in R2n...
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Tensorial viewpoint...

By Leibniz there exists unique π ∈ X2(M) = Γ(∧2TM),

{f , g} = π(df , dg).

π is Poisson bivector field.

⋄ In local coordinates (x1, . . . , xn):

{f , g}(x) =
∑
i ,j

πij(x)
∂f
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∂g

∂xj
, πij = {xi , xj},

π =
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The Jacobiator...

For π ∈ X2(M),
{f , g} = π(df , dg)

may not satisfy Jacobi id.

Jac(f , g , h) = L[Xf ,Xg ]h − LX{f ,g}h = (LXf
π)(dg , dh).

There exists Υπ ∈ X3(M) such that

Jac(f , g , h) = Υπ(df , dg , dh),

naturally described in terms of the Schouten bracket on X•(M),

Υπ =
1

2
[π, π]
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The Schouten bracket...

There is a unique R-bilinear bracket

[·, ·] : Xk(M)× Xl(M) → Xk+l−1

such that

▶ [X ,Y ] = −(−1)(x−1)(y−1)[Y ,X ],

▶ [X ,Y ∧ Z ] = [X ,Y ] ∧ Z + (−1)(x−1)yY ∧ [X ,Z ]

▶ For X vector field, [X , ·] = LX

It also satisfies the graded Jacobi identity.

It is “the Poisson bracket” on T ∗[1]M.
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Back to Poisson manifolds...

A Poisson structure on M is either

▶ Poisson bracket {·, ·} on C∞(M), or

▶ π ∈ Γ(∧2TM) such that [π, π] = 0.

A Poisson manifold is denoted by (M, {·, ·}) or (M, π),

{f , g} = π(df , dg).
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The characteristic distribution...

On a Poisson manifold (M, π):

Anchor map: π♯ : T ∗M → TM, α 7→ π(α, ·).

Characteristic distribution: R = π♯(T ∗M) ⊆ TM.

⋄ Rank of π at x is dimension of Rx .

⋄ π is regular if rank is constant

⋄ π is nondegenerate if R = TM (iff π♯ is isomorphism).

Is R integrable?
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Examples

⋄ Trivial (zero rank),

⋄ Vector space V , π ∈ ∧2V

⋄ any bivector field in 2-d, e.g. π = f (x , y)∂x ∧ ∂y on R2

⋄ Symplectic structures = nondegenerate Poisson structures

⋄ Quotients by symmetries: M/G

⋄ Dual of Lie algebras = Linear Poisson structures.

⋄ Direct products M1 ×M2,

{f , g}(x1, x2) = {fx2 , gx2}1(x1) + {fx1 , gx1}2(x2)
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⋄ Poisson-Lie groups and their Poisson homogeneous spaces

E.g. any connected compact semi-simple Lie group and their
coadjoint orbits (Lu-Weinstein).

⋄ Log- / b-symplectic manifolds,

M2n, ∧nπ transverse to zero section of ∧2nTM

⋄ Other “symplectic Lie algebroids” (E -symplectic): bk , c , elliptic,
scattering....
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And more...

▶ Moduli space of flat G -bundles over surfaces (Atiyah-Bott...).

▶ Poisson brackets in infinite dimensions (related to integrable
PDEs, e.g. KdV)

▶ Many examples in holomorphic/algebraic category
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Basic theory

(M, π) Poisson manifold.

Is R = Im(π♯) integrable?

We will look at Poisson structures locally....

Nondegenerate case (symplectic): Around any point, π is “the”
Poisson bracket ∑

i

∂

∂pi
∧ ∂

∂qi
.

This is Darboux’s theorem.



Basic theory

(M, π) Poisson manifold.

Is R = Im(π♯) integrable?

We will look at Poisson structures locally....

Nondegenerate case (symplectic): Around any point, π is “the”
Poisson bracket ∑

i

∂

∂pi
∧ ∂

∂qi
.

This is Darboux’s theorem.



Basic theory

(M, π) Poisson manifold.

Is R = Im(π♯) integrable?

We will look at Poisson structures locally....

Nondegenerate case (symplectic): Around any point, π is “the”
Poisson bracket ∑

i

∂

∂pi
∧ ∂

∂qi
.

This is Darboux’s theorem.



Basic theory

(M, π) Poisson manifold.

Is R = Im(π♯) integrable?

We will look at Poisson structures locally....

Nondegenerate case (symplectic): Around any point, π is “the”
Poisson bracket ∑

i

∂

∂pi
∧ ∂

∂qi
.

This is Darboux’s theorem.



Weinstein’s splitting theorem (1983): Around any z0 ∈ M, there is
isomorphism from (M, π) to product

(S , πS)× (N, πN), z0 = (x0, y0),

where πS is symplectic and πN |y0 = 0.

In coordinates centered at z0 = 0:

π =
∑
i

∂

∂pi
∧ ∂

∂qi︸ ︷︷ ︸
πS

+
∑
i<j

φij(y)
∂

∂yi
∧ ∂

∂yj︸ ︷︷ ︸
πN

,

with φij(0) = 0.

Recent new approaches and generalizations (Frejlich-Marcut,

Bursztyn-Lima-Meinrenken)
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Symplectic leaves....

Weinstein’s splitting theorem implies integrability of R.

(In a splitting chart S × N, S satisfies TS = R|S .)

Globally: “Leaves” on (M, π) are equivalence classes of

x ∼ y ⇐⇒ y = ϕt1
Xf1

◦ . . . ◦ ϕtr
Xfr

(x)

Then:

▶ Each leaf has (unique) structure of immersed submanifold
S ↪→ M, and TS = R|S

▶ Each leaf S is symplectic, inclusion is Poisson map.

Collection of symplectic leaves is symplectic foliation.
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Symplectic leaves in examples...

▶ R2, π = f (x , y)∂x ∧ ∂y

▶ M = S/G for hamiltonian G -space S

▶ g∗, coadjoint orbits

▶ so(3)∗: z∂x∂y + x∂y∂z + y∂z∂x
▶ sl(2)∗: −z∂x∂y + x∂y∂z + y∂z∂x
▶ sb(2)∗: x∂x∂z + y∂y∂z

▶ Poisson Lie groups and homogeneous spaces, e,g, SU(2) = S3

and CP1 = S2....

▶ Log-symplectic structures...
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What else is there locally?

⋄ Transverse Poisson structure to a leaf S ↪→ M (well-defined germ).

⋄ Lie algebra on conormal spaces ν∗x = Ker(π♯
x),

[α, β] = d{f , g}|x ,

where α = df |x , β = dg |x , and f |S = g |S = 0.

Hence Poisson geometry brings together:

Symplectic geometry ↭ Foliations ↭ Lie theory
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Relation: Dual Lie algebra on νx is linear approximation to
transverse structure: ckij = ∂ykφij .

Classical question: Linearization problem (Weinstein, 1983)

When is a Poisson structure π, satisfying π|y = 0, locally
isomorphic to its linear approximation ?

▶ Conn’s theorem (isotropy Lie algebra semisimple, compact)

▶ Geometric proof by Crainic – Fernandes

▶ Recent paper Fernandes – Marcut
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Some Poisson invariants...

Poisson cohomology: H•
π(M),

. . . −→ Xk(M)
dπ=[π,·]−→ Xk+1(M) −→ . . .

▶ Interpretations in low dimensions...

▶ H0
π(M) = Casimirs(M),

▶ H1
π(M) = Xπ(M)/XHam(M)

▶ H2
π(M) = Infinitesimal defs/trivial defs

▶ Hard to compute, but various calculations around...

Modular class: [XΩ] ∈ H1
π(M), where XΩ is

f 7→ LXf
Ω

Ω

Nontrivial e.g. for log-symplectic manifolds...
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Plan of lectures:

▶ Lectures 1 and 2:
▶ Definitions (Poisson brackets, bivectors, hamiltonian vfs...)
▶ Examples
▶ Local theory (splitting, transverse, isotropy Lie algebra)
▶ symplectic foliation
▶ Invariants (Poisson cohomology, modular class)

▶ Lecture 3: Lie algebroids and symplectic groupoids.

▶ Lecture 4: Dirac structures (basics, applications...).



Plan for today:

▶ Symplectic realizations

▶ Lie groupoids / Lie algebroids

▶ Poisson structures and Lie algebroids

▶ Symplectic groupoids



Symplectic realizations

(M, π) Poisson manifold.

A symplectic realization is a Poisson map

µ : (S , ω) → (M, π).

It is called full if µ is surjective submersion.

Some examples:

▶ Trivial Poisson

▶ Linear Poisson structures, momentum maps

Property: (ker(dµ))ω is involutive/integrable (Libermann’s thm).
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From realizations to dual pairs

A (full) dual pair is
S

µ1

~~

µ2

  
M1 M2,

(full) symplectic realizations with (ker(dµ1))
ω = ker(dµ2).

For a full dual pair (Weinstein, 1983):

▶ connected µ1-, µ2-fibers =⇒ bijection of symplectic leaves

▶ (anti-)isomorphic transverse Poisson structures

This leads to a weaker notion of equivalence (Morita equivalence,
Picard groups).
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Do full realizations exist?

Theorem (Karasev, Weinstein): Every Poisson manifold has full
symplectic realization.

Crainic–Marcut, Frejlich–Marcut: for T ∗M → M,

ω =

∫ 1

0
(ϕt)

∗ωcandt,

with ϕt flow of Poisson spray.

⋄ No longer true for complete realizations (Crainic–Fernandes).

⋄ realization versus “integration”?
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General picture

Lie algebras ⇌ Lie groups

Poisson manifolds ⇌ symplectic groupoids

(M , π) (G, ω) ⇒ M

Lie algebroids ⇌ Lie groupoids



Interlude: Lie groupoids and algebroids

Lie groupoids

Manifolds G, M equipped with:

(1) surjective submersions s, t : G → M (source, target maps);

(2) a smooth multiplication map m : G(2) → G, (g , h) 7→ gh,
defined on G(2) = {(g , h) | s(g) = t(h)};

(3) a diffeomorphism i : G → G, g 7→ g−1, called inversion;

(4) an embedding ε : M → G, x 7→ 1x , called unit map.

▶ composition law: s(gh) = s(h), t(gh) = t(g);

▶ associativity law: (gh)k = g(hk)

▶ law of units: s(1x) = t(1x) = x , and g1s(g) = 1t(g)g = g

▶ law of inverses: s(g−1) = t(g), t(g−1) = s(g) and
g−1g = 1s(g), gg−1 = 1t(g).
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Some examples

⋄ Lie groups

⋄ Manifolds

⋄ Fundamental and pair groupoids

⋄ G -manifolds

⋄ Vector bundles

⋄ General linear groupoids

Essential ingredients: For x ∈ M,

▶ Orbits: Ox = {t(g) | s(g) = x}.
▶ Isotropy groups: Gx = {g | s(g) = t(g) = x}.
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Lie algebroids

A → M vector bundle, ρ : A → TM, [·, ·] Lie bracket on Γ(A),

[u, fv ] = f [u, v ] + (Lρ(u)f )v , f ∈ C∞(M)

Examples:

⋄ Tangent bundles: A = TM, ρ = Id.

⋄ Involutive distributions: D ↪→ TM, ρ is inclusion.

⋄ Lie algebras: M = {∗}

⋄ g-manifolds

⋄ b- (a.k.a log -) tangent bundles bTM (a.k.a. TZM).
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Some features of Lie algebroids

⋄ Characteristic distribution: R = ρ(A) ⊆ TM

(orbits are integral leaves)

⋄ Isotropy Lie algebras: gx = Ker(ρ)|x

⋄ A-differential forms: ΩA(M) = Γ(∧•A∗)

dAf (a) = Lρ(a)f ,

dAξ(a, b) = Lρ(a)(ξ(b))− Lρ(b)(ξ(a))− ξ([a, b]) ....

E.g. A-symplectic forms, A-cohomology...

⋄ A-multivector fields: (Γ(∧•A), [·, ·]).

E.g. A-Poisson structures...
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The Lie algebroid of a Lie groupoid

⋄ A = ker(ds)|M → M,

⋄ ρ = dt|A : A → TM

⋄ Lie bracket of vector fields on Γ(A) = XR(G).

Lie(G) := (A, ρ, [·, ·]).

A Lie algebroid is integrable if it is of the form Lie(G).

Lie theorems and the integration problem: not every Lie algebroid
is integrable! (obstructions due to Crainic-Fernandes, 2003).
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Poisson structures vs Lie algebroids

Poisson manifolds are Lie algebroids

The cotangent Lie algebroid of a Poisson manifold (M, π):

(A = T ∗M, ρ = π♯, [df , dg ] = d{f , g}).

▶ orbits are symplectic leaves

▶ isotropy Lie algebras are transverse Lie algebras

▶ Lie algebroid cohomology is Poisson cohomology

Global counterparts?



Poisson structures vs Lie algebroids

Poisson manifolds are Lie algebroids

The cotangent Lie algebroid of a Poisson manifold (M, π):

(A = T ∗M, ρ = π♯, [df , dg ] = d{f , g}).

▶ orbits are symplectic leaves

▶ isotropy Lie algebras are transverse Lie algebras

▶ Lie algebroid cohomology is Poisson cohomology

Global counterparts?



Poisson structures vs Lie algebroids

Poisson manifolds are Lie algebroids

The cotangent Lie algebroid of a Poisson manifold (M, π):

(A = T ∗M, ρ = π♯, [df , dg ] = d{f , g}).

▶ orbits are symplectic leaves

▶ isotropy Lie algebras are transverse Lie algebras

▶ Lie algebroid cohomology is Poisson cohomology

Global counterparts?



Poisson structures vs Lie algebroids II

⋄ Lie algebroids ⇌ Linear Poisson structures (on v.b.)

{la, lb} = l[a,b], {la, f } = Lρ(a)f

⋄ Generically nondegenerate Poisson structures as symplectic Lie
algebroids...

Example (Guillemin - Miranda- Pires):

log-symplectic structures = A-symplectic structures on A = TZM

Others: bk , c−, elliptic, scattering...



Poisson structures vs Lie algebroids II

⋄ Lie algebroids ⇌ Linear Poisson structures (on v.b.)

{la, lb} = l[a,b], {la, f } = Lρ(a)f

⋄ Generically nondegenerate Poisson structures as symplectic Lie
algebroids...

Example (Guillemin - Miranda- Pires):

log-symplectic structures = A-symplectic structures on A = TZM

Others: bk , c−, elliptic, scattering...



Poisson structures vs Lie algebroids II

⋄ Lie algebroids ⇌ Linear Poisson structures (on v.b.)

{la, lb} = l[a,b], {la, f } = Lρ(a)f

⋄ Generically nondegenerate Poisson structures as symplectic Lie
algebroids...

Example (Guillemin - Miranda- Pires):

log-symplectic structures = A-symplectic structures on A = TZM

Others: bk , c−, elliptic, scattering...



Poisson structures vs Lie algebroids II

⋄ Lie algebroids ⇌ Linear Poisson structures (on v.b.)

{la, lb} = l[a,b], {la, f } = Lρ(a)f

⋄ Generically nondegenerate Poisson structures as symplectic Lie
algebroids...

Example (Guillemin - Miranda- Pires):

log-symplectic structures = A-symplectic structures on A = TZM

Others: bk , c−, elliptic, scattering...



Poisson structures vs Lie algebroids II

⋄ Lie algebroids ⇌ Linear Poisson structures (on v.b.)

{la, lb} = l[a,b], {la, f } = Lρ(a)f

⋄ Generically nondegenerate Poisson structures as symplectic Lie
algebroids...

Example (Guillemin - Miranda- Pires):

log-symplectic structures = A-symplectic structures on A = TZM

Others: bk , c−, elliptic, scattering...



Poisson structures vs Lie algebroids II

⋄ Lie algebroids ⇌ Linear Poisson structures (on v.b.)

{la, lb} = l[a,b], {la, f } = Lρ(a)f

⋄ Generically nondegenerate Poisson structures as symplectic Lie
algebroids...

Example (Guillemin - Miranda- Pires):

log-symplectic structures = A-symplectic structures on A = TZM

Others: bk , c−, elliptic, scattering...



Symplectic groupoids

Lie groupoid G ⇒ M with multiplicative symplectic form
ω ∈ Ω2(G),

m∗ω = pr∗1ω + pr∗2ω

There exists unique Poisson π on M such that

t : G → M

is complete symplectic realization.

⋄ Symplectic groupoid integrates (T ∗M)π, and ssc integration is
symplectic.

⋄ Complete realizations ⇐⇒ integrability

⋄ Can we always “integrate” a Poisson manifold? No...
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Various examples....

▶ Trivial

▶ Symplectic

▶ Quotients M/G (integrability is preserved!)

▶ Duals of Lie algebras (DSG!)

▶ Poisson Lie groups

▶ Poisson homogeneous spaces

▶ Log-symplectic
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Other aspects, applications...

⋄ Poisson homotopy groupoid and Poisson sigma model.

⋄ Symplectic groupoids and quantization

⋄ Symplectic groupoids and moment maps

⋄ Symplectic groupoid as tool in Poisson geometry:

▶ calculation of invariants, vanishing of cohomologies... e.g.
geometric proof of Conn’s linearization.

▶ Poisson manifolds of compact types

⋄ Poisson groupoids; Lie bialgebroids and Courant algebroids.
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Plan of lectures:

▶ Lectures 1 and 2:
▶ Definitions (Poisson brackets, bivectors, hamiltonian vfs...)
▶ Examples
▶ Local theory (splitting, transverse, isotropy Lie algebra)
▶ symplectic foliation
▶ Invariants (Poisson cohomology, modular class)

▶ Lecture 3: Lie algebroids and symplectic groupoids.
▶ Symplectic realizations
▶ Lie groupoids, Lie algebroids
▶ Lie algebroids in Poisson geometry
▶ Symplectic groupoids

▶ Lecture 4: Dirac structures (basics, applications...).



Plan for today:

▶ Dirac structures
▶ Motivation
▶ Definition, examples, properties...
▶ Applications



From symplectic geometry to Dirac structures

⋄ Symplectic structures (phase spaces): (M, ω)

⋄ Poisson structures [’1977/’1983] (symmetries): (M, π)

Intrinsic geometry of submanifold in Poisson phase space?

⋄ Dirac structures [’1990] (submanifolds, constraints)

Dirac’s brackets for “second class” C = {x , φi (x) = 0}:

{f , g}Dirac := ({F ,G} − {F , φi}cij{φj ,G})|C ,

where c ij = {φi , φj}.
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The guiding questions...

▶ How to unify presymplectic and Poisson structures?

▶ How can one pull-back a Poisson structure?

Key idea: Geometry in terms of

TM := TM ⊕ T ∗M .

View 2-forms and bivectors as “graphs”:

ω : TM → T ∗M , ω∗ = −ω, π : T ∗M → TM , π∗ = −π.

what do they have in common?
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The standard “Courant algebroid”

TM = TM ⊕ T ∗M

Pairing: ⟨(X , α), (Y , β)⟩ = β(X ) + α(Y )

Courant bracket: [[(X , α), (Y , β)]] = ([X ,Y ],LXβ − iY dα)

NOT Lie bracket...

Prototypical example of a Courant algebroid (E , ρ, ⟨·, ·⟩, [[·, ·]])
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Dirac structures (Courant, Weinstein, 1990)

Subbundle L ⊂ TM,

▶ L = L⊥

▶ [[Γ(L), Γ(L)]] ⊂ Γ(L)

Examples:

▶ L = graph(ω), ω : TM → T ∗M, dω = 0

▶ L = graph(π), π : T ∗M → TM, [π, π] = 0

▶ Involutive distributions (foliations): L = D ⊕Ann(D).

▶ Submanifolds of Poisson manifolds (more later).

▶ Generalized complex structures (more later).

▶ Cartan-Dirac on Lie groups (more later).
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Singular Poisson versus smooth Dirac structures...

M = R3 = {(x , y , z)},

L = span
〈
( ∂
∂y , zdx), (

∂
∂x ,−zdy), (0, dz)

〉
is Dirac structure

For z ̸= 0, this is graph of π = 1
z

∂
∂x ∧ ∂

∂y :

{x , y} =
1

z
, {x , z} = 0, {y , z} = 0.
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Properties of Dirac structures

⋄ Lie algebroid (integration...)

⋄ Presymplectic foliation

Nondegenerate Poisson structure ⇄ Symplectic structure

Poisson structure ⇄ Symplectic foliation

Dirac structure ⇄ Presymplectic foliation

⋄ Kernel: L ∩ TM

⋄ Hamiltonian vector fields, Poisson algebras...

⋄ Richer symmetries: B-fields / gauge transforms

⋄ Good functorial properties
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Functorial properties: Two types of “Dirac maps”

Pullback of forms extend to pullback of Dirac structures:

φ : N → (M, L),

φ!L := {(X , q∗β) | (dq(X ), β) ∈ L} ⊂ TN ⊕ T ∗N.

It leads to “Backward” Dirac maps.

φ-related bivectors (Poisson maps) extend to “forward” Dirac map:

φ : (M1, L1) → (M2, L2),

L2|φ(x) = {(dφ(X ), β) | (X , φ∗β) ∈ L1|x}

Caveat: Transversality/cleaness issues...
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Back to submanifolds of Poisson manifolds (M, π)...

Submanifolds i : C ↪→ M inherit Dirac structures via pullback of π.

(enough: π♯(Ann(TC)) ⊆ TM|C of constant rank).

Kernel of pullback is TC ∩Ann(TC ).

Examples:

▶ (Co-regular) Poisson-Dirac submanifolds

▶ Poisson transversals (a.k.a cosymplectic or “second class”
submanifolds):

TM|C = TC ⊕ π♯(Ann(TC )), with Dirac brackets.

▶ Moment level sets: J : M → g∗ Poisson map,

C = J−1(0) ↪→ M

Role of Dirac maps in reduction.
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The whole theory can be “twisted”...

Consider closed 3-form ϕ ∈ Ω3
cl(M):

ϕ-twisted Courant bracket (Severa):

[[(X , α), (Y , β)]]ϕ = [[(X , α), (Y , β)]] + iY iXϕ.

Then

▶ Dirac structures: modified integrability conditions, but similar
properties...

▶ Twisted Poisson structure: 1
2 [π, π] = π♯(ϕ)
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The Cartan-Dirac structure on Lie groups

G Lie group, ⟨·, ·⟩g : g× g → R Ad-invariant.

We have ϕG ∈ Ω3(M) Cartan 3-form.

Cartan-Dirac structure:

LG := {(ur − ul ,
1

2

〈
ur + ul , ·

〉
g
) | u ∈ g}.

This is ϕG -integrable.

Singular foliation: Conjugacy classes

Leafwise 2-form (G.H.J.W. ’97):

ω(uG , vG )|g :=

〈
Adg −Adg−1

2
u, v

〉
g
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Applications....



1. G -valued moment maps (Alekseev, Malkin, Meinrenken)

G -valued moment maps are (forward) Dirac maps

J : (M, ω) → (G , LG ).

Reduction: J−1(1)/G is symplectic !

Example: M = G 2h and J : M → G ,

J(a1, b1, . . . , ah, bh) = Πh
j=1[aj , bj ].

Then
J−1(1)/G = Hom(π1(Σh),G )/G

is moduli of flat G -bundles over Σh.

Description of Atiyah-Bott symplectic form via (twisted) Dirac structures

Other aspects: volume forms, pure spinors (Alekseev, B.-, Meinrenken), q-Poisson...
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2. Generalized complex structures (Hitchin, Gualtieri, 2003/04)

J : TM → TM, J 2 = −Id ,

▶ J ∈ O(TM),

▶ [[Γ(L), Γ(L)]] ⊂ Γ(L), L = +i-eigenbundle of J .

Equivalently: Dirac structure L ⊂ TMC such that L ∩ L̄ = {0}.

Examples:(
0 −ω−1

ω 0

) (
−J 0
0 J∗

) (
A π
σ −A∗

)

Various aspects: def. theory (holomorphic Poisson), generalized Kahler (bihermitian

geometry, supersymmetric sigma models), T-duality, reduction, surgery...

⋄ More general complex Dirac structures? (D. Aguero, R. Rubio)
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Other applications:

▶ Normal forms around transversals (for Poisson, GC, etc.).

▶ Poisson homogeneous spaces (classification and integration).

▶ Super/graded geometric approach.

▶ Shifted symplectic structures



Thanks for your attention!


