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Basic intro with a view towards other talks this and next week....

Plan of lectures:

» Lectures 1 and 2: Definition and examples of Poisson
manifolds; basic properties.
» Lecture 3: Lie algebroids and symplectic groupoids.

» Lecture 4: Dirac structures (basics, applications...).

o Weinstein, “Local structure of Poisson manifolds”, JDG, 1983.

© Books by Cannas da Silva— Weinstein, Dufour-Zung, Pichereau—
Laurent-Gengoux — Vanhaecke...

© New book: “Lectures on Poisson geometry”, Crainic, Fernandes, Marcut.



Outline for lectures 1 and 2:

> “The" Poisson bracket.

» Definitions and (classes of ) examples.

» Basic theory (local structure, symplectic foliation, some
invariants).
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In the context of classical (celestial) mechanics:
Phase space: R?" = {(q', p;)},

Dynamics: H € C>(R?") Hamiltonian,
0 Id OH 0 O0H 0
X
H= < Id 0) ( ) Zap,aq dq' Op;
Poisson bracket: C®(R?") x C*®(R2") — C>(R?"),

of og  Of 0g
fgv =S 2L g, f
{f.g} E,- 9p9d  9q 0p {g,f}

Dynamical meaning of Poisson bracket: {H,f} = Lx,f
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Conserved quantities: f such that {H,f} = Lx,f = 0.

Many conserved quantities =—> “complete integrability”!

Poisson’s theorem:

{Hv f} :Ov{va} =0 = {Hv{fag}} =0.

Jacobi identity (1842): Poisson bracket satisfies

{H{f.g}} +{g:{H,f}} +{f . {g, H}} = 0.

S. Lie (1880): Lie algebras, Lie groups...
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Modern era...

A. Lichnerowicz A. Weinstein

Why? Representation theory, Geometric mechanics (plasma physics),
Deformation quantization...
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Basic definitions

o A Poisson bracket on M is {-,-} : C®°(M) x C*(M) — C*(M):

> {f,g} = _{g7 f}|
> {f.{g.h}} +{h{f.g}} +{g.{h.f}} =0 (Jacobi)
> {f,ght ={f,gth+{f hig (Leibniz)

o A Poisson manifold is (M, {-,-})
© Poisson map: ¢ : (/\/11, {-, }1) — (M2>{'7 }2)

{f,g}20¢:{fo¢,go¢}1, vagECOO(MZ)

Poisson diffeos, also interesting weaker notions...



© Hamiltonian vector field of f € C*(M): Xr = {f,-},

Lx.g={fg}=—Lx,f

If Xr =0 we say that f is a Casimir.

Properties:
> Lx.f={f,f}=0,
> ﬁfo =0, EXHg =0 — EXH{f,g} =0,
> [Xr, Xg] = Xi,g}-



© Hamiltonian vector field of f € C*(M): Xr = {f,-},

Lx.g={fg}=—Lx,f

If Xr =0 we say that f is a Casimir.

Properties:

> Lx f= {f,f} =0,
> ﬁXHfZO, ﬁXHgZO == ﬁXH{f,g}ZO,
> [Xr, Xg] = Xi,g}-

The Poisson bracket is example of a Poisson structure in R?"...
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Tensorial viewpoint...

By Leibniz there exists unique m € X2(M) = [(A2TM),

{f,g} = n(df,dg).

7 is Poisson bivector field.

o In local coordinates (xi, ..., Xp):
of Og
{f.g}(x) = Z”U(X)aaf&’ T = {xi, X },
i

1 0 0

i
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The Jacobiator...

For m € X2(M),
{f. g} =n(df,dg)

may not satisfy Jacobi id.

Jac(f,g, h) = ﬁ[xﬁxg]h - Ex{fyg}h = (ﬁxf’iT)(dg, dh).

There exists T, € X3(M) such that
Jac(f, g, h) = T.(df,dg, dh),
naturally described in terms of the Schouten bracket on X*(M),

Tr= %[ﬂ',ﬂ']
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The Schouten bracket...

There is a unique R-bilinear bracket
[,]: (M) x /(M) — k-1
such that

> [X, Y] =~ (- DDy, X],
> [X,YAZ]=[X,Y]AZ+ (-1)*"WY A[X, Z]
» For X vector field, [X, ] = Lx

It also satisfies the graded Jacobi identity.

It is “the Poisson bracket” on T*[1]M.
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On a Poisson manifold (M, 7):
Anchor map: 7 : T*M — TM, a + (e, ).
Characteristic distribution: R = 7#(T*M) C TM.

o Rank of 7 at x is dimension of R,.
o 7 is regular if rank is constant

o 7 is nondegenerate if R = TM (iff 7 is isomorphism).

Is R integrable?
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Examples

o Trivial (zero rank),

o Vector space V, m € A2V

o any bivector field in 2-d, e.g. ™ = f(x,y)0x A 9y on R?

© Symplectic structures = nondegenerate Poisson structures
© Quotients by symmetries: M/G

¢ Dual of Lie algebras = Linear Poisson structures.

o Direct products My x Ms,

{f.g}(x1,x2) = {fo, 80 }1(x1) + {faq, 84 F2(x2)
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¢ Poisson-Lie groups and their Poisson homogeneous spaces
E.g. any connected compact semi-simple Lie group and their
coadjoint orbits (Lu-Weinstein).

o Log- / b-symplectic manifolds,

M?2" A7 transverse to zero section of A2" TM

o Other “symplectic Lie algebroids” (E-symplectic): b, c, elliptic,
scattering....
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And more...

» Moduli space of flat G-bundles over surfaces (Atiyah-Bott...).

» Poisson brackets in infinite dimensions (related to integrable
PDEs, e.g. KdV)

» Many examples in holomorphic/algebraic category
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Basic theory

(M, ) Poisson manifold.
Is R = Im(n*) integrable?
We will look at Poisson structures locally....

Nondegenerate case (symplectic): Around any point, 7 is “the”
Poisson bracket 9

0
Z,.: opi 4 oq;i

This is Darboux’s theorem.
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Weinstein's splitting theorem (1983): Around any zy € M, there is
isomorphism from (M, ) to product

(5,7T5) X (N77TN)7 20 = (X07y0)a
where s is symplectic and 7|y, = 0.
In coordinates centered at zg = 0:
0 0 0 0
= A+ i) A o,
Zi: op;  0q; Z;@U( )3)/; dy;
—_———

TS TN

with ¢;;(0) = 0.

Recent new approaches and generalizations (Frejlich-Marcut,
Bursztyn-Lima-Meinrenken)
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Symplectic leaves....
Weinstein's splitting theorem implies integrability of R.
(In a splitting chart S x N, S satisfies TS = R|s.)
Globally: “Leaves” on (M, ) are equivalence classes of
X~y <= y:qﬁﬁéﬁ o...oqbﬁgfr(x)

Then:

» Each leaf has (unique) structure of immersed submanifold
S— M, and TS = R]|s

» Each leaf S is symplectic, inclusion is Poisson map.

Collection of symplectic leaves is symplectic foliation.
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> R?, = f(x,y)0x A O,
» M =5/G for hamiltonian G-space S

» g*, coadjoint orbits

> so(3)*: z0.0, + x0,0, + y0,0«
> sl(2)":  —z0x0y + x0,0, + y0,0x«
> sb(2)*: x00, + yd,0,

> Poisson Lie groups and homogeneous spaces, e,g, SU(2) = S3
and CP! = 52,

» Log-symplectic structures...
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What else is there locally?

© Transverse Poisson structure to a leaf S < M (well-defined germ).

o Lie algebra on conormal spaces v} = Ker(TrE),

[, 8] = d{f, g},

where ao = df |y, B = dg|x, and f|s = g|s = 0.

Hence Poisson geometry brings together:

Symplectic geometry «~s Foliations «~ Lie theory
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Relation: Dual Lie algebra on vy is linear approximation to
k _
transverse structure: cj; v, P -

Classical question: Linearization problem (Weinstein, 1983)

When is a Poisson structure , satisfying 7|, = 0, locally
isomorphic to its linear approximation 7

» Conn's theorem (isotropy Lie algebra semisimple, compact)
» Geometric proof by Crainic — Fernandes

» Recent paper Fernandes — Marcut
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Some Poisson invariants...

Poisson cohomology: H2(M),
o R (M) BT ke gy

P Interpretations in low dimensions...

| H?r(l\/l) = Casimirs(M),
> Hy(M) = Xr(M)/X pam(M)
> H2(M) = Infinitesimal defs/trivial defs

» Hard to compute, but various calculations around...

Modular class: [Xq] € HX(M), where Xq is

Lx.Q
Q

Nontrivial e.g. for log-symplectic manifolds...

f—




Plan of lectures:

» Lectures 1 and 2:
» Definitions (Poisson brackets, bivectors, hamiltonian vfs...)
> Examples
> Local theory (splitting, transverse, isotropy Lie algebra)
» symplectic foliation
» Invariants (Poisson cohomology, modular class)

» Lecture 3: Lie algebroids and symplectic groupoids.

» Lecture 4: Dirac structures (basics, applications...).



Plan for today:

» Symplectic realizations
» Lie groupoids / Lie algebroids
P Poisson structures and Lie algebroids

» Symplectic groupoids
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Symplectic realizations

(M, ) Poisson manifold.
A symplectic realization is a Poisson map
e (S,w) — (M, ).

It is called full if p is surjective submersion.

Some examples:
» Trivial Poisson

» Linear Poisson structures, momentum maps

Property: (ker(du))® is involutive/integrable (Libermann’s thm).
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From realizations to dual pairs
A (full) dual pair is
S
RN
M, M,
(full) symplectic realizations with (ker(dpu1))“ = ker(dua).

For a full dual pair (Weinstein, 1983):
» connected p1-, pp-fibers = bijection of symplectic leaves

» (anti-)isomorphic transverse Poisson structures

This leads to a weaker notion of equivalence (Morita equivalence,
Picard groups).
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Do full realizations exist?

Theorem (Karasev, Weinstein): Every Poisson manifold has full
symplectic realization.

Crainic—Marcut, Frejlich-Marcut: for T"M — M,

1
w_/ (¢t)*wcandt7
0

with ¢; flow of Poisson spray.

¢ No longer true for complete realizations (Crainic—Fernandes).

© realization versus “integration”?



General picture

Lie algebras = Lie groups

Poisson manifolds = symplectic groupoids
(M, ) (G w)=M

Lie algebroids = Lie groupoids
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Manifolds G, M equipped with:

(1) surjective submersions s,t: G — M (source, target maps);
(2) a smooth multiplication map m : G2y ~ 9, (g, h) — gh,
defined on G(3) = {(g,h)|s(g) =t(h)};
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Interlude: Lie groupoids and algebroids
Lie groupoids

Manifolds G, M equipped with:
(1) surjective submersions s,t: G — M (source, target maps);
(2) a smooth multiplication map m : G5y — G, (g, h) — gh,
defined on G2y = {(g, h) [s(g) = t(h)};

(3) a diffeomorphism i: G — G, g — g1, called inversion;
(4) an embedding ¢ : M — G, x — 14, called unit map.

» composition law: s(gh) = s(h), t(gh) = t(g);

» associativity law: (gh)k = g(hk)

> law of units:  s(1x) = t(1x) = x, and gly,) = lyz)e =&
» law of inverses:  s(g™!) =t(g), t(g~!) = s(g) and

£ e=1y) g8 =l
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© Fundamental and pair groupoids
¢ G-manifolds

© Vector bundles

© General linear groupoids

Essential ingredients: For x € M,
» Orbits: Oy = {t(g)|s(g) = x}.
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Lie algebroids
A — M vector bundle, p: A — TM, [-,-] Lie bracket on I'(A),

[u, fv] = flu, v] + (ﬁp(u)f)v, fe C®(M)

Examples:

o Tangent bundles: A= TM, p=1d.

¢ Involutive distributions: D < TM, p is inclusion.
o Lie algebras: M = {x}

© g-manifolds

o b- (a.k.a log-) tangent bundles °TM (a.k.a. TzM).
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o Characteristic distribution: R = p(A) C TM
(orbits are integral leaves)
o Isotropy Lie algebras: g, = Ker(p)|x

o A-differential forms: Qa(M) = T'(A®A*)
daf(a) = Ep(a)f

da&(a, b) = L,a)(£(P)) — L) (£(a)) — &([a, b]) ...

E.g. A-symplectic forms, A-cohomology...
o A-multivector fields: (F(A*A), [, ]).

E.g. A-Poisson structures...
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The Lie algebroid of a Lie groupoid

o A= ker(ds)|py — M,
o p=dtjpg: A= TM
o Lie bracket of vector fields on T'(A) = XR(G).

Lle(g) = (A7 P, [‘7 ])
A Lie algebroid is integrable if it is of the form Lie(G).

Lie theorems and the integration problem: not every Lie algebroid
is integrable! (obstructions due to Crainic-Fernandes, 2003).
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Poisson structures vs Lie algebroids

Poisson manifolds are Lie algebroids

The cotangent Lie algebroid of a Poisson manifold (M, 7):

(A= T*M,p ==t [df,dg] = d{f,g}).

P orbits are symplectic leaves
> isotropy Lie algebras are transverse Lie algebras

» Lie algebroid cohomology is Poisson cohomology

Global counterparts?
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Poisson structures vs Lie algebroids Il

o Lie algebroids = Linear Poisson structures (on v.b.)
{la I} = /[a,b]v {lL,f}= ‘Cp(a)f

¢ Generically nondegenerate Poisson structures as symplectic Lie
algebroids...
Example (Guillemin - Miranda- Pires):

log-symplectic structures = A-symplectic structures on A= ToM

Others: b*, c—, elliptic, scattering...
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Symplectic groupoids

Lie groupoid G = M with multiplicative symplectic form
w € Q%(G),

m*w = pr{w + pryw

There exists unique Poisson m on M such that
t:Gg—-M

is complete symplectic realization.

o Symplectic groupoid integrates (T*M),, and ssc integration is
symplectic.

o Complete realizations <= integrability

© Can we always “integrate” a Poisson manifold? No...
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Various examples....

Trivial

Symplectic

Quotients M/G (integrability is preserved!)
Duals of Lie algebras (DSG!)

Poisson Lie groups

Poisson homogeneous spaces

vV v vV v v VY

Log-symplectic
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Other aspects, applications...

© Poisson homotopy groupoid and Poisson sigma model.
© Symplectic groupoids and quantization
o Symplectic groupoids and moment maps

© Symplectic groupoid as tool in Poisson geometry:

» calculation of invariants, vanishing of cohomologies... e.g.
geometric proof of Conn's linearization.

» Poisson manifolds of compact types

© Poisson groupoids; Lie bialgebroids and Courant algebroids.



Plan of lectures:

» Lectures 1 and 2:
» Definitions (Poisson brackets, bivectors, hamiltonian vfs...)
> Examples
> Local theory (splitting, transverse, isotropy Lie algebra)
» symplectic foliation
» Invariants (Poisson cohomology, modular class)

» Lecture 3: Lie algebroids and symplectic groupoids.

» Symplectic realizations

» Lie groupoids, Lie algebroids

» Lie algebroids in Poisson geometry
» Symplectic groupoids

» Lecture 4: Dirac structures (basics, applications...).



Plan for today:

» Dirac structures

» Motivation
» Definition, examples, properties...
» Applications
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From symplectic geometry to Dirac structures

o Symplectic structures (phase spaces): (M, w)

o Poisson structures ['1977/'1983] (symmetries): (M, )
Intrinsic geometry of submanifold in Poisson phase space?

o Dirac structures ['1990] (submanifolds, constraints)

Dirac’s brackets for “second class’ C = {x, ¢'(x) = 0}:

{f. 8}oirsc = ({F, G} — {F,¢"}ez{¢, G})lc,

where ¢/ = {o/ o/ 1.



The guiding questions...



The guiding questions...

» How to unify presymplectic and Poisson structures?



The guiding questions...

» How to unify presymplectic and Poisson structures?

» How can one pull-back a Poisson structure?



The guiding questions...

» How to unify presymplectic and Poisson structures?

» How can one pull-back a Poisson structure?

Key idea: Geometry in terms of

™ :=TM & T*M.



The guiding questions...

» How to unify presymplectic and Poisson structures?

» How can one pull-back a Poisson structure?

Key idea: Geometry in terms of

™ :=TM & T*M.

View 2-forms and bivectors as “graphs”:



The guiding questions...

» How to unify presymplectic and Poisson structures?

» How can one pull-back a Poisson structure?

Key idea: Geometry in terms of

™ :=TM & T*M.

View 2-forms and bivectors as “graphs”:

w: M — T*M, w* = —uw, m: T"M — TM, 7* =



The guiding questions...

» How to unify presymplectic and Poisson structures?

» How can one pull-back a Poisson structure?

Key idea: Geometry in terms of

™ :=TM & T*M.

View 2-forms and bivectors as “graphs”:

w: M — T*M, w* = —uw, m: T"M — TM, 7* =

what do they have in common?
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The standard “Courant algebroid”

™ =TM o T*M

Pairing: (X,a),(Y,B)) =B(X)+a(Y)

Courant bracket:  [(X, ), (Y,8)] = ([X, Y], LxB — iyda)

NOT Lie bracket...

Prototypical example of a Courant algebroid (E, p, (-,-),[",-])
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Dirac structures (Courant, Weinstein, 1990)
Subbundle L ¢ TM,

> [ =t
> [r(L),r(L)] c (L)

Examples:
» [ =graph(w), w:TM — T*M, dw =10
» [ =graph(w), w:T*M — TM, [, 7] =0
» Involutive distributions (foliations): L = D & Ann(D).
» Submanifolds of Poisson manifolds (more later).
» Generalized complex structures (more later).
>

Cartan-Dirac on Lie groups (more later).
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Singular Poisson versus smooth Dirac structures...

M=R?={(x,y,2)},
L= Span<(a%,zdx), (%, —zdy), (0, dz)> is Dirac structure
For z # 0, this is graph of 7 = %8)( 5y

Xy} = %, {x,z} =0, {y,z} =0.
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Properties of Dirac structures

o Lie algebroid (integration...)

© Presymplectic foliation

Nondegenerate Poisson structure = Symplectic structure
Poisson structure = Symplectic foliation

Dirac structure = Presymplectic foliation

o Kernel: LN TM

© Hamiltonian vector fields, Poisson algebras...

© Richer symmetries: B-fields / gauge transforms

¢ Good functorial properties



Functorial properties: Two types of “Dirac maps”



Functorial properties: Two types of “Dirac maps”

Pullback of forms extend to pullback of Dirac structures:



Functorial properties: Two types of “Dirac maps”

Pullback of forms extend to pullback of Dirac structures:

@:N—=(M,L),

¢'L:={(X,q"8)|(dq(X),B) € L} C TN ® T*N.



Functorial properties: Two types of “Dirac maps”

Pullback of forms extend to pullback of Dirac structures:

@:N—=(M,L),

¢'L:={(X,q"8)|(dq(X),B) € L} C TN ® T*N.

It leads to “Backward” Dirac maps.



Functorial properties: Two types of “Dirac maps”

Pullback of forms extend to pullback of Dirac structures:

@:N—=(M,L),

¢'L:={(X,q"8)|(dq(X),B) € L} C TN ® T*N.

It leads to “Backward” Dirac maps.

-related bivectors (Poisson maps) extend to “forward” Dirac map:



Functorial properties: Two types of “Dirac maps”

Pullback of forms extend to pullback of Dirac structures:

@:N—=(M,L),

¢'L:={(X,q"8)|(dq(X),B) € L} C TN ® T*N.

It leads to “Backward” Dirac maps.

-related bivectors (Poisson maps) extend to “forward” Dirac map:

@ (M, L1) = (Mo, L),

Loy = {(de(X), B) | (X, ¢"B) € Lil<}



Functorial properties: Two types of “Dirac maps”

Pullback of forms extend to pullback of Dirac structures:

@:N—=(M,L),

¢'L:={(X,q"8)|(dq(X),B) € L} C TN ® T*N.

It leads to “Backward” Dirac maps.

-related bivectors (Poisson maps) extend to “forward” Dirac map:

@ (M, L1) = (Mo, L),

Loy = {(de(X), B) | (X, ¢"B) € Lil<}

Caveat: Transversality/cleaness issues...
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Back to submanifolds of Poisson manifolds (M, r)...

Submanifolds i : C < M inherit Dirac structures via pullback of .
(enough: w#(Ann(TC)) C TM|c of constant rank).

Kernel of pullback is TC N Ann(TC).

Examples:
» (Co-regular) Poisson-Dirac submanifolds

» Poisson transversals (a.k.a cosymplectic or “second class”
submanifolds):

TM|c = TC @ n*(Ann(TC)), with Dirac brackets.
> Moment level sets: J: M — g* Poisson map,
C=JY0)— M

Role of Dirac maps in reduction.
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The whole theory can be “twisted” ...
Consider closed 3-form ¢ € Q3,(M):

¢-twisted Courant bracket (Severa):

[(X.a), (Y, B)]. = [(X, ), (Y,B)] + ivixo.

Then

» Dirac structures: modified integrability conditions, but similar
properties...

> Twisted Poisson structure: [r, 7] = 7%(¢)
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The Cartan-Dirac structure on Lie groups

G Lie group, (-, -)Q :g x g — R Ad-invariant.
We have ¢ € Q3(M) Cartan 3-form.

Cartan-Dirac structure:
r ! 1 r /
Lo ={(u —u'. 5(v +u',) ) [uegh
g

This is ¢g-integrable.
Singular foliation: Conjugacy classes

Leafwise 2-form (G.H.J.W. '97):

Ad, —Ad, -1
slueva)ls = ( “E )
g
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1. G-valued moment maps (Alekseev, Malkin, Meinrenken)

G-valued moment maps are (forward) Dirac maps

J: (M,w) — (G, Lg).

Reduction: J71(1)/G is symplectic !
Example: M = G?hand J: M = G,
J(al, bl, ...ydh, bh) = I'IJ’-’Zl[aj, bj].

Then
J_l(l)/G = Hom(m1(X4), G)/G

is moduli of flat G-bundles over ¥},

Description of Atiyah-Bott symplectic form via (twisted) Dirac structures

Other aspects: volume forms, pure spinors (Alekseev, B.-, Meinrenken), g-Poisson...
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J:TM - TM, J?>=-Id,

> J e O(TM),
> [F(L),T(L)] c (L), L= +i-eigenbundle of J.

Equivalently: Dirac structure L C TMc such that LN L = {0}.
Examples:

0 —wt -J 0 A
w 0 0o J o —A*
Various aspects: def. theory (holomorphic Poisson), generalized Kahler (bihermitian

geometry, supersymmetric sigma models), T-duality, reduction, surgery...

o More general complex Dirac structures? (D. Aguero, R. Rubio)



Other applications:
» Normal forms around transversals (for Poisson, GC, etc.).
» Poisson homogeneous spaces (classification and integration).
» Super/graded geometric approach.
» Shifted symplectic structures



Thanks for your attention!



