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In this paper, we defineM2ifrom scratch as the subgroup of S2i preserving a Steiner
system #(5,8,24). The Steiner system is produced and proved to be unique and the
group emerges naturally with many of its properties apparent.

All nine maximal subgroups of M2i are introduced and described.
It is hoped that the reader will appreciate the advantages of the techniques developed

here, and through them will acquire a greater familiarity with the workings of this
amazing group.

In the latter part of the paper some tabular information about the group is collected
together. J. H. Conway has kindly given permission for his table of subsets of Q. to be
included and J. A. Todd has allowed me to add the character table of M^ from his
elegant paper (3).

It is intended to follow this paper with a new, short proof, using terminology intro-
duced here, that the list of nine maximal subgroups is complete.

The Steiner System 8(5,8,24).

Definition. A Steiner System S(5,8,24) is a collection of 8-element subsets of a
24-element set, Q, with the property that any five of the twenty-four lie in just one
of them.

We observe that, if such a system exists, then there are I I /1 I = 759 of these
8-element sets or octads.

THEOREM A. There exists a Steiner System 8(5,8,24).

Method of Proof. We shall consider the power set of Q, P(Q), as a 24-dimensional
vector space over the field with two elements GF2 where the sum of two sets is defined
to be their symmetric difference. We shall produce a subspace, #', of P(Q) whose
smallest members are subsets of size eight and shall show, moreover, that "<? contains
just 759 of these 'octads'. Clearly no two octads can have five points in common as
their sum would then have six points or less in it. Thus these octads must form a
Steiner System S(5,8,24).

Proof. Let A be an 8-element set and consider any two 3-dimensional subspaces of
P(A) whose members are all tetrads (i.e. 4-element subsets) and whose intersection
is the empty subset.
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Fig. 1

We notice that any member of L, say, defines a unique 2-dimensional subspace
or line of P ; namely the set of members of P that it cuts evenly (i.e. 2-2). Thus the
members of L are in one-to-one correspondence with the lines of P. We shall call P the
point-space and L the line-space and use the notation Aec, B$e to mean that A is
on the line associated with c and B is not on the line associated with e. Notice that if
XeP and teL then Xet^> \X + t\ = 4, Z£<=> \X + t\ = 2 or 6. The correspondence
is shown in Fig. 2.

By consideration of dimension, we see that any even subset of A can be written
uniquely as X + tor X' + t, where XeP, teL and X' + X = A.

We now take three copies of A and define the space %> (of 'g'-sets) to consist of all
sets of the form:

(XorX') + t (YovY')+t (ZoiZ') + t
for

in A1 in A, in A,
A, A2 A3

where
instance

= 0. ̂  is plainly 12-dimensional. A typical 'io-set can be named for

[AB'C]d denotes [A + d, B' + d, C + d] =

We now investigate the sizes of the #-sets.
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Intersection with
Name (modulo

complementation in At)

[0 0
[X X
[X Y
[0 0
[X X
[X X
[X Y
[X Y

0] .
0] ,
Z]o

0],
0],
0],
z\
z-]t

Description
—

X 4= 0
X, Y, Z distinct

t 4= 0
0 4= X$t 4= 0
0 4= Xet 4= 0

{X, Y, Z} = t 4= 0
{X, Y, Z) n t = {X}

t

A,

0/8
4/4
4/4
4/4
2/6
4/4
4/4
4/4

A

A2

0/8
4/4
4/4
4/4
2/6
4/4
4/4
2/6

A3

0/8
0/8
4/4
4/4
4/4
4/4
4/4
2/6

In each case X+Y + Z =
(4= 0) are of size 8.

and m/n means m or n. We see that the smallest 'g'-sets
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We count the octads. Let us call the set of octads '

\AFG\f

7.3.2.2 = 84
7.4.3.2 = 168
7.3.3.2.2.2 = 504

of shape
of shape
of shape
of shape

[0 0 0]0
[X X 0]0
[X X 0],
[X Y Z]t Total 759

This completes the proof of Theorem A.
In fact the construction enables us to describe the octads in a very revealing manner.

I t shows that each octad, other than Av A2, A3, intersects at least one of these ' bricks'
— the 'heavy brick' - in just four points. In Fig. 3 we draw a number of octads for
which Ax is a heavy brick, so that each is made of a 'brick tetrad' in the brick A1(

and a 'square tetrad' in the square A2 +A3. These prompt the following remarks.
The brick tetrad may be any one of the 70 tetrads in that brick. These fall into 35

groups of two, tetrads being grouped when their union is the brick.
The square tetrad, however, must be one of the 140 special tetrads that intersect

all the rows of the square with the same parity, and all the columns of the square
with the same parity. These fall into 35 groups of 4, tetrads being in the same group
when their union is an octad.

There is a correspondence between the two systems of 35 groups, which is illus-
trated in Fig. 4 (the MOG or Miracle Octad Generator). This has 35 pictures which
show against each complementary pair of brick tetrads, the corresponding group of
special square tetrads. We obtain an octad by taking either of the brick tetrads to-
gether with any one of the square tetrads from the same picture. The reader should
verify for himself how each of the tetrads in Fig. 3 arises from one of theMOGpictures.
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Fig. 4. (The MOG.)

Now the MOG diagram has all the 6 symmetries bodily permuting A1,A2,A3 so
we can take any one of these as a heavy brick, and the other two (in any order) as
the square, when the above description will cover any octad other than one of the Ait

since this octad will have at least one heavy brick.
Note that the MOG has a 36th picture which gives names 00,0,1,..., 22 for the 24

points of Q. These names will be explained later.
Example. Find the octad which contains the points 22,1,12,6,8. Since this has the

four points (22,1,12,6) in the brick A3, and one point (8) in Ax + A2 we look for that

MOG pattern which has as brick tetrad, finding it to be bottom left. Here we

see that the corresponding square tetrad (in the square Ax + A2) which contains the point
_

(8) is (0, 8,16,7) and so the required octad is £_£ _ _ | _ = (0,8,16, 7, 22,1,12,6).
X

Example. Find the octad containing the points 0,15,18,5,6.

Here Ax must be a heavy brick with brick tetrad containing 0,15,18. We examine the
five pictures in which 0,15,18 belong to the same brick tetrad and find that in the

.V

X X

X

X
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A new combinatorial approach to M2i 29
top right hand comer picture 5 and 6 belong to the same special tetrad 5,6,4,17. The
octad is therefore

= (0,15,14,18,17,4,5,6).

Example. Find the octad containing the five points 0,14,2,22,21. In the MOG

JC

X

X X

X

X

X

X

these appear as

0,14,22,21 is not special.

X

X

X

X

X

and so the heavy brick must be Aj or A3 since the tetrad

If A3 is the brick the corresponding square tetrad in Aj + A2 is
X

X

X .

X

shown in

the MOG by the top left hand picture where we observe that 5 and 6 do not lie in

the same brick tetrad. Thus Ax must be the brick,
X

X

X

X

must be the square

tetrad in A2 + A3 and from the bottom right hand picture of the MOG we see that

the required octad is
X X

X
X

X

X

X

X

= (co,0,14,20,ll,22,2,21).

With a small amount of practice this process takes a matter of seconds.
Having produced a particular 8(5,8,24), we return momentarily to the general case.

We have remarked that there are I I /1 I = 759 octads. Similarly it is clear that

(23\ I(1\ /22\ / / 6 \

I /1 I = 253 octads containing a given point and I I /1 I = 77 octads
containing a given two points. Thus there are 253 — 77 = 176 octads containing a
chosen one point of a given pair but not the other. In this way, letting

88 =

be an octad and #3- = {axa2... a,} (j < 8), we get the following table due to Leech:

759
506 253

330 176 77
210 120 56 21

130 80 40 16 5
78 52 28 12 4 1

46 32 20 8 4 0 1
30 16 16 4 4 0 0 1

30 0 16 0 4 0 0 0 1

Fig. 5
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30 R. T. CUETIS

where the j + lth entry in the i + l th line is the number of octads intersecting St in Sj.
In particular the bottom line shows that any two octads intersect in 0, 2, 4 or 8 points.

LEMMA 1 (Todd).IfS,Te^8and \8(\T\ = 4=> S + Te^s.

Proof. Let S = {a1a2a3aiaia6a7a8} and T = {a1a2a3aib5b6b7b8} be two octads and
consider the octad containing the five points a5a6a7a8ba which we suppose not to be
S + T. This can contain no further point of S without being S and, since it only con-
tains one point of T, it must contain a further b, say b6. Similarly the octad defined
by the points a5aea7a8b7 may be assumed to contain b8. But now the octad defined by
a5 as a7 65 b7 must contain a further point of S which cannot be a8 and so may be taken
to be av I t must now contain a further point of T which may not be an a (or we should
have five a's) but whether we add 66 or bs we find we have five points of a previous
octad. So our original assumption was false and S + T is an octad.

COROLLARY. Corresponding to each 4 points of O there is a partition of the 24 points
into 6 tetrads with the property that the union of any two tetrads is an octad. Such a con-
figuration will be called a sextet.

Now let Y = Yt vy F2 w ... w Ys be a decomposition of Y into disjoint sets Yi. A subset
X will be said to cut this decomposition rx. r2... rs if X has exactly ri points in Yt

(\X\ =ri + r2+...+rs).

LEMMA 2. An octad cuts the 6 tetrads of a sextet 4?. 04, 3.15 or 24.02.

Proof. This follows immediately from the definition of a sextet and the fact that
any two octads intersect in 0, 2, 4 or 8 points.

LEMMA 3. The intersection matrix for the tetrads of two sextets is one of the following:

(1)

(3)

(2)

(4)

/ 2

(2

1°
\o
/3
(1

0
0
0

\o

2
2
0
0
0
0

1
3
0
0
0
0

0
0
2
2
0
0

0
0
1
1
1
1

0
0
2
2
0
0

0
0
1
1
1
1

0
0
0
0
2
2

0
0
1
1
1
1

0
0
0
0
2
2

0
0
1
1
1
1

Proof. An easy corollary to Lemma 2.
We are now in a position to prove the following theorem.

THEOREM B. The Steiner System 8(5,8, 24) is unique up to relabelling the points and
the subgroup of S2i preserving the octads has order 244, 823,040 and is quintuply transitive
on the 24 points.

Proof. Let xlt x2, x3, x4, x5> x6 be an ordered set of 6 points in an octad Ox of the
Steiner System S(5,8,24) defined on the 24-point set Q. Suppose that x7 is a further

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004100052075
Downloaded from https://www.cambridge.org/core. University of Sheffield Library, on 03 Jan 2022 at 10:33:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004100052075
https://www.cambridge.org/core


A new combinatorial approach to M24 31

point of Q not in 0v We shall show that the S(5,8,24) may be assumed to be the one
we have already seen and that the group of permutations of Q. preserving the system
is sharply transitive on such ordered sets of 7 points and so has order

24.23.22.21.20.3.16.

Let the sextet defined by the tetrad xlt xz, x3, xi be called S^, and let its tetrads be
the columns of the 4 x 6 array:

X, Xs X7

(where O1 consists of the first two columns).

Now, using Lemmas 2 and 3 we shall obtain sufficient sextets to imply the 8(5,8, 24).
The octad containing the five points x2, x3, x4, x5, x7 must cut S^ 3. Is and so by re-

arranging the un-named 17 points, if necessary, we may assume that

0 x
x 0
x 0
x 0

1 1
2 2
3 3
4 4

1 1
2 2
3 3
4 4

is a sextet.

Remark. Sx and So together imply that every symmetric difference of 2 rows with
2 columns in the right hand square, Q + Ov is an octad. This gives | . 6 . 6 + 2.6 = 30
octads disjoint from Ox which we see from Fig. 5 to be all.

The octad containing xv x3, x4, x5, x7 cuts both S& and So 3.15 and so by arranging
the bottom 3 rows of Q. + Olt if necessary, and the above remark, we may assume that:

is a sextet.

At this stage, we note that the full group of rearrangements of the un-named 17
points which preserve the sextets Sx, So and Sx is given by:

X X

0 0
x 0
x 0

1 2
2 1
3 4
4 3

3 4
4 3
1 2
2 1

• •
• •
• •
• • ld\

%%
e2b3

• •

1 1
—
X : i • • • •

(where dots denote fixed points and n is a 3-element taking 2/i->2/2-^2/3->2/x for
y = a,b,c,d or e).

Now the octad containing the points xlt x2, x&, x6, x7 cuts 8X 24.02 and so, using the
element n, may be assumed to cut the first four columns of $„ 24. But it cuts So 24.02

also; so contains the top point of the fourth column. Sx now implies that it is:

Thus: S,=

X X

X X

X X

X X

X X
X X

0 0
0 0

1 1
1 1
3 3
3 3

2 2
2 2
4 4
4 4

is a sextet.
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32 R. T. CURTIS

Similarly the octad containing xltx2,x3,x5,x1 cannot contain points marked 0 in

without having five points in a previous octad, and so it must be one
X X

X

X

X

x 0
0 0
0
0

0 0

0
0

of

X X

X

X

X

X

X

X

or

X X

X

X

X

X

X

X
(since it cuts each of Sm, So and Sx 3. Is).

Under the action of the permutation a, these are equivalent and so we may assume
that:

is a sextet,

when

X X

x 0
x 0
0 0

1 2
3 4
4 3
2 1

3 4
1 2
2 1
4 3

X X

x 0
0

x 0

1 2
4 3
2 1
3 4

3 4
2 1
4 3
1 2

is forced to be.

Finally consider the octad containing the points
X X

X

X

X
which must have

one further point in the second column and points in the first and third rows of one
of the last three columns (since it cuts both $«, and So 2

4.02). #4 implies that these

are

X X

X

X X

X X

Thus:

and using p we take the octad to be

is a sextet.

X X

X X

X X

X X

X X

0 0
X X

0 0

1 1
2 2
1 1
2 2

3 3
4 4
3 3
4 4

Note that there is no permutation of the 17 un-named points fixing the sextets
$cc» #o> $i> ^2> $3> $4 a n d # 5 .

Now whenever 2 of our sextets intersect evenly (i.e. a tetrad of one cuts the tetrads
of the other 22.04), we may take the symmetric difference of suitable octads in them
to give a new octad and sextet. Thus:

X X
X X

X X
X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

0 0
0 0
X X

1 1
2 2
2 2
1 1

3 3
4 4
4 4
3 3

In this way we may soon verify that each of the 35 sextets defined by a partition
of O1 into 2 tetrads is as shown in the MOG.

LEMMA 4. / / every octad intersecting a given octad 0 in four points is known, then all
octads follow by symmetric differencing.
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Proof. Let x,y,zeO (3 distinct points). Any octad containing x,y,z must contain
a further point of 0 and so be a known octad. From Fig. 5 there exist 21 such. Now
any two of these intersect in 4 points and so their symmetric difference is an octad

(21\
I = 210 of these which must all be distinct since, if

U +V = W + T where U, V, W and T are octads containing x, y, z, then 2 points of
U\{x,y,z} are in W, say, i.e. U and W have 5 points in common. From Fig. 5, we see
that these are all the octads disjoint from x,y,z. So we have every octad disjoint
from some 3 points of 0, i.e. every octad.

We have thus shown that the only S(5,8,24) is that given by the MOG. Moreover if
2/i>2/2>2/3>2/4>2/5>2/6>2/7 a r e ~' points of the same type as the x's then there is just one
permutation of the 24 points which preserves the octads and takes yi~>Xi for each
i = 1 — 7. This completes the proof of Theorem B.

Let us call this quintuply transitive group M24 and its subgroup fixing k points
M2i_k (k < 5).

Now suppose that a is an element of order 23 in M2i; we number the points of Q.
as the protective line oo, 0,1,2,..., 22 so that a : i -> i+1 (modulo 23) and fixes oo. In
fact there is a full L2(23) acting on this line and preserving the octads as may be readily
verified by applying the remaining generator y:i-+ — Iji to the sextets

and checking that their images are indeed sextets. (Or more simply by verifying that
y is an involution of M24 - see page 36.) We shall call this group the Projective sub-
group of M 24.

A class of involution. Since M2i is quintuply transitive on the points of Q. it is transi-
tive on the octads. From Theorem B we see that the stabilizer of an octad must act
as A8 on the points of that octad (being exactly 6-tuply transitive on them) and so
have shape K.AZ, where K is a group of order 16 fixing the octad pointwise.

One element of K which we have, in effect, already seen is the involution bodily

interchanging the last 2 bricks of the MOG. viz. , where dots denote

fixed points. (Since there are other important 4x6 arrangements of the 24 points of Q.
we shall in future add the subscript M to denote that we are meaning the MOG
array.)

Moreover it is clear that the elements:

• •

• •

—

— —
M

• •

1 1
1 1

1 1
1 1

M
n V

M

fix every sextet of the MOG and are thus in the group Jf24.
But together these elements generate an elementary abelian group of order 16 and

so constitute a copy of K.
Thus to every octad F and every 2 points i and j not in F there is a unique involution

PSP 79
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34 E. T. CURTIS

of M24 fixing every point of F and interchanging the 2 points i and j ; let us call this
element Fi:j. We note that F^ = Fkl o{i,j, k, 1} is a special tetrad of the 16-ad F + Q,
i.e. if it is the intersection of an octad with F + Q. Thus using the MOG, it is an easy
matter to construct the element Ftj.

Example. Find the Fij involution having the action:
• • • • X

•
. We seek octads

M
containing the two points {1,19} and four of 0 = {oo, 14,17,11,22,9, 5, 6}; the remaining
two points of this octad must form a transposition. Thus

• • X X
X X

X X
X X

M M

and we soon arrive at
• •

=

• • X
i :

M

[Note that the octad denned by {1,19} and any three of C must contain a fourth of
C, and so the problem reduces to simple octad finding.]

The space '£.

So far we have seen only 0 , Q, 759 octads and 759 16-ads in <€. Now

212 = 4096 = 1 + 759 + 2576 + 759+1

and so there are just 2576 more ^-sets to be found.
The sum of 2 octads which intersect in 2 points will have size 12 and will be called

a dodecad. The total number of dodecads which occur in this way (with repetitions)

is 759.1 1.16/2 (using figure 5) and the maximum number of ways a dodecad may

occur as the sum of 2 octads is when every 5 points of the dodecad belong to one octad
of such a pair and is thus

^ 2 j = 2.3.11.

Thus the minimum number of dodecads is 23 .1 1.4 = 2576. But we have seen this

to be the maximum also. Thus the only ^-sets other than 0 , Q., <&s and " ^ are the
dodecads (6V2i. Further every 5 points of a dodecad determine a unique 6th point which
together with the 5 form the intersection of some octad with the dodecad. Thus there
is a Steiner system S(5,6,12) defined on the points of a dodecad.

THEOBEM C. The space *€ consists of the empty set 0, the whole set Q, 759 octads, 2576
dodecads and 759 16-ads. M2i is transitive'pn each of these classes of subset and the proper
subgroups of MM arising as stabilizers of '0>-sets are: 2i.As fixing an octad and its com-
plementary 16-ad and 3121 fixing a dodecad.

Proof. I t remains to prove transitivity on dodecads.
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A new combinatorial approach to M2i 35

It suffices to show that the subgroup 24. S6 of the stabilizer of an octad F which
fixes 2 points of that octad as a pair, is transitive on the 16 octads intersecting F in
just those 2 points (see Fig. 5). As octad F we take the first brick of the MOG and, as

X X X X X

X

X
X

fixed pair, the top 2 points of it. One of the 16 octads is — and we observe

M
that no element of the 24 fixing every point of F fixes this octad. Thus the 24 is
transitive on the 16 octads and the stabilizer of one of them is a group S6 acting on
the 6 points of F not in the special pair. We note in passing that the S6 must also
act on the points of the other octad that we fixed (by the symmetry of the situation)
and that the 2 actions cannot be permutation identical since, if they were, it would
be possible to produce a non-trivial element of M 24 fixing 8 points of a dodecad. Plainly
these 8 points cannot constitute an octad and so, by Theorem B, any such permu-
tation must be the identity. Thus the 2 actions of S6 must appear and it is, there-
fore, possible to fix a point of one 6 and remain transitive on the other 6. We have
thus seen that the stabilizer of a dodecad is quintuply transitive on the 12 points of
the dodecad and since its order is |M24|/2576 = 12.11.10.9.8 it is sharply quintuply
transitive.

We shall call this group M12.
It is clear that the complement of a dodecad must itself be a dodecad - such a pair

of complementary dodecads will be called a duum. The transitivity of M2i on dodecads
implies that there is a permutation of M24 interchanging the 2 dodecads of a duum
and so there is a subgroup M12.2 in M24.

As with M24 we shall refer to the subgroup of M12 fixing k points as M12_k (k < 5).

LEMMA 5. The only element of MZi fixing 7 points not in an octad is the identity.

Proof. Any element fixing 6 points of an octad must fix the other 2 (since it lies
in A8) and so lie in the elementary abelian 2-group of fixed point free involutions.
The subgroup fixing 6 points not in an octad has order 3 and a generator for this
group has shape 16.36, where each 3-cycle completes an octad defined by some 5
of the 6 fixed points (since the normalizer of this group must permute the 6 points
as SB).

COROLLARY 1. The 15 involutions fixing an octad point-wise are all conjugate.

Proof. 'Let n be an element of order 15 in the A8 fixing an octad F and one point i
outside it. The disjoint cycles of n must be of lengths 1,3, 5 or 15 and, since no non-
trivial element of M2i fixes 9 points of Q. (lemma 5), it has shape 3.5.1.15; this is
plainly transitive on the involutions Fip

COROLLARY 2. The 3-element fixing the top row of the MOG is given by

M
Proof. Since the symmetric difference of the top row of the MOG with any column

is an octad the triples which are cycled must be as shown. Giving the first column
3-2
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the downward sense, we observe that the octad

X X

X X

X X

X X

X X

X X

X X

X X must be taken into

M

and so all must cycle downwards.

M

Note: this process enables us to write down the unique subgroup of order 3 fixing
any set of 6 points not in an octad.

A further class of involution. We notice that:

11
1 1

11
11

X

M

• •

• •
IIII
Mil

A || -
| |

1 1( ) 7V
M

and so there is a further class of involutions which have no fixed point. Moreover we
see that there is a unique sextet which is fixed tetrad-wise by this element - for the
above involution this is S& (the columns of the MOG). If M is a dodecad fixed by the
involution and having 2 points in each tetrad of this sextet then the 'name' 8M

completely defines the involution (in this case we could choose M to be
X X

X X

X X

X X

X X

X X

) •

M

We must now show that corresponding to every symbol SM — where 8 is a sextet and
M is a dodecad cutting across the tetrads of 8 26 - there is an involution of M24 whose
name is SM. It suffices to show that:

LEMMA 6. M12 is transitive on sextets cutting the duum (2.2)G.

Proof. Let the dodecads be X and Y. M12 is quintuply transitive on the points of
both X and Y. The sextet defined by 4 points of X, say, must cut the duum

(4.0)(2.2)4(0.4)

- a consequence of our proof that there are just 2576 dodecads. We now show that
M12 has just two orbits on tetrads cutting 2.2 across the duum. One of these must
give the last-mentioned type of sextet and so we shall have shown that there is just
one orbit of sextets cutting (2.2)6. Now fixing 2 points of X defines a partition of Y
into two halves s.t. each half makes an octad with the fixed points. As we saw before,
the stabilizer in M12 of the 2 points acts as Se on both these two halves with non-
permutation identical actions. Thus this 8e contains a subgroup fixing a point of one
half and transitive on the 6 points of the other half. So the only distinction between
pairs of points of Y is whether they lie in the same or different halves. This proves
the lemma and implies that the involutions 8M are all conjugate.

To complete our work on the involutions of 3124 and to give an example of working
with the MOG we prove:
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A new combinatorial approach to M2i 37

LEMMA 7. There are just two classes of involution in M2i namely the F^ and the 8M.

Proof. Let neM^, nz = 1.
Since there is an odd number of octads n fixes one, say the first MOG brick. Now

the action of Stabj/^Aj) on Ax is A8 and so n must fix no point, 4 points or all points
of Av If all points are fixed then n must belong to the 24 group and so is an Ftj. In the
other two cases we mimic the action of n on Ax with an element Fti. Thus, under con-

jugation by A8, suppose the action of rt on Aj is

or by a =P =
11
11

11
11

• •

At

• •

11
• •
1 1X

1 i

1 1
or

• •

• •

1 1
and multiply by

respectively. Thus np (or ncr) e 24 and, in

M
particular, n and p (n and <r) commute. The involutions of 24 commuting with p are

clearly just those 7 fixing each MOG brick; one of these gives the
1 1
11

• •
• •

I I
11

At

and the other 6 visibly give involutions SM (where S is one of the sextets defined by
the tetrads A, D, E of the point-space P (page 26)). Those commuting with cr are just
the 3 which preserve sextet A tetrad-wise, viz:

'• '•

—

— —

M

• • 1 1
1 1

1 1
1 1

At

• *
X
X

X

X
M

and all these lead to Fij elements.
Let us call a set of 3 disjoint octads (such as the bricks of the MOG) a trio.

LEMMA 8. M24 is transitive on trios.

Proof. Consider an element of shape 3.5.1.15 in the A8 fixing an octad and a point
outside it. This element must have 2 orbits of length 15 on the 30 octads disjoint
from the fixed one; plainly one of these consists of those octads containing the fixed
point and the other of the rest. Thus the stabilizer of an octad is transitive on the 15
trios containing the fixed octad.

The Trio Stabilizer.

There are (759.15)/3 = 3795 trios and so the order of the subgroup fixing one of
them is |JW24|/3795 = 26.3.2.168.

Definition. A sextet whose tetrads may be grouped in pairs to form the trio T is
said to be a refinement of T.

Now every sextet is a refinement of 15 trios (the number of ways 6 objects may be
paired) and so the number of refinements of a trio is: (1771.15)/3795 = 7.

For the MOG trio these are plainly A, B, C, D,E,F, 0.
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38 R. T. CURTIS

Now we know that these form a vector subspace of ^* and so the maximum action
the trio group can have on the refinements is L3(2) (which is isomorphic to Lz(l)).
The permutations:

M mm
L L J

M

• •
• • X

11
M

(AE)(BF)(.Q(D)(G) (A)(B)(Q(DE)(FG)~

clearly generate L2(l). Moreover the bodily interchanges of the MOG bricks form an
S3 which fixes all refinements. Thus the trio group has shape:

fixing all octads
and refinements

fixing the refinements but
permuting the octads

fixing octads but
permuting refinements.

The factor space.
Consider the map <f>:P(Ct)-*-Hf&, GF2) (the space of linear maps from (€ to the field

GF2) defined by:
(C)(X$) = 0 if \CnX\e2Z

= 1 if \Gt\X\e2Z + l,
where Ce<<? and XeP(Q.).

This map is plainly a homomorphism and the space <<? is contained in its kernel.
But the bilinear form (X, Y) = 0 if and only if | X n Y | e 2Z (for X and Y e P( Q)) gives a
zero quadratic form on "̂  and so Ker$ = <&. Thus P(Q)/'^' is isomorphic to the dual
space of ^ and so, from now on, we shall refer to it as <§*.

Let XeP(Q). If \X\ ^ 5, then adding an octad F containing 5 points of X to X
results in a smaller set X + F. Since X = X+P(mod<g') we see:

LEMMA 9. AnysetP(Q) iscongruent, mod^, toamonad (one point), a dyad (twopoints),
a triad (three points) or a sextet (the 6 tetrads of a sextet being congruent to one another
mod'af).

There are:
24

= 276

s) - 2024

= 1771

monads

dyads

triads

sextets.

We note that 1+24 + 276 + 2024+1771 = 4096 = 212. The quintuple transitivity of
M24 implies transitivity on each of these sets.

We see that the stabilizers of a monad, a dyad and a triad are respectively:

M 23, M22.2 and M21.S3.
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A new combinatorial approach to M2i 39

The sextet stabilizer.

The stabilizer of a sextet has order |ilf24|/1771 = 26.3.6!. If we choose as sextet

(i.e. the columns of the MOG) we find that the element
• •

11
• •
11
—
X

acts as a

M

transposition on the tetrads. But clearly the sextet stabilizer is doubly transitive on.
the tetrads since M20 is transitive on the 20 points remaining.

Thus every transposition of tetrads occurs and the action on the tetrads is Se. Now
every involution fixing two tetrads pointwise and preserving the others is in the
group, i.e.

• •11
11
11
11

M

• •

• •

v
f]\\0

\(
n >n M

• •

* *
• •

\ /
MilA

w
111 1

A etc.

M

There are = 45 of these.

Since any two clearly commute (their action on the individual tetrads being the
elements of the P̂  in J.4) they generate a normal elementary abelian subgroup of order
at least 26. From the order of the sextet group it is at most 26 and so the whole group
has shape:

Elementary
abelian fixing
each tetrad

Action on the
6 tetrads

The Octern Group.

To complete our description of the subgroups of M M, we introduce a further maximal
subgroup known as the Octern group On. On may be defined as the centralizer in M24

of a certain element of order 3 in S2i\M2i, or, alternatively, as the stabilizer of a cer-
tain purely dodecad 4-dimensional subspace of *£. We display here the set Q arranged
as a 3 x 8 array whose columns are the cycles of this 3-element (the eight terns), the
first tern having opposite sense of rotation to the others. The subspace consists of
those #-sets which are unions of terns.

00

17
22

14
7
21

18
10
12

8
16
19

0
11
6

20
2
9

15
13
1

3
4
5

It turns out that On ^ L2(7) and is generated by the element fixing the rows and
cycling the last seven columns of the figure, together with the involution displayed
above.
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40 R. T. CURTIS

We have now seen all the maximal subgroups of M2i. In fact every maximal sub-
group is conjugate to one of the following:

Monad Stabilizer M^ Duum Stabilizer M12.2
Dyad Stabilizer M22.2 Trio Stabilizer 26.(S3xL2(7))
Triad Stabilizer M21.S3 Octern Group L^l)
Sextet Stabilizer 26.3.£6 Projective Group £2(23)
Octad Stabilizer 24. A8

A short proof of this statement is the content of a sequel to this paper. We conclude
with some tabular information which the reader will find useful.

The orbits on the subsets of £1.

The orbits on the subsets of Q. under the action of M24 have been worked out by Todd.
Conway has exhibited the information in a convenient tabular form, (2), and has
furnished a simple proof that the list is complete. We shall adhere to his notation for
the various subsets and reproduce here his table and proof.

THEOREM D. The subsets of Q.fall into 49 orbits under the action of M2i, related as in
the following table. Each node corresponds to one orbit, and the nodes are joined by lines
indicating the number of ways a set of one type can be converted to one of another by the
addition or removal of a single point. Thus in an umbral heptad (U.,), there is one point
whose removal leaves a special hexad (/S6), removal of any of the other 6 leaving an umbral
hexad (U6) instead.

Proof. In each case we consider (i) what the set is congruent to modulo and (ii) the
nearest '^'-set(s). If the set is congruent to a monad, dyad or triad modulo ^ then
there is a unique nearest 'g'-set (namely the sum of the original set with the monad,
dyad or triad it is congruent to). If the set is congruent to a sextet then there are just
six nearest ^-sets. As an example of this we consider 8-element sets. Each 8-element
set is congruent to one of: (a) the empty set 0, (b) a unique dyad T, (c) the 6 tetrads
of a sextet modulo ^ .

In case (a), the set S is an octad. M24 is transitive on these.
In case (6), 8 is obtained from the octad 8 + T by adding one point and subtracting

another. The octad group is independently transitive on an octad and its complement
and so M24 is transitive on sets of this type which will be called transverse octads T8.

In case (c) S + Tt {% one of the tetrads) is an octad if Tt contains 2 points of S and
a dodecad if it is disjoint from 8. Counting points of S shows that there are four
tetrads of the first kind and two of the second, so that 8 can be obtained (in 2 ways)
by removing 4 points from a dodecad. The quintuple transitivity of M12 on the points
of the fixed dodecads show M2i to be transitive on such sets 8 which will be called
umbral octads Ua.

Note. The 2 tetrads of the sextet congruent to S modulo # which are disjoint from S
form an octad which is determined by S. In particular the group fixing a U8 also fixes
an octad. We shall use this fact in the sequel.

In general, a set of cardinal n < 12 is called special (Sn) if it contains or is contained
in a special octad (octad), otherwise umbral (Un) if it is contained in an umbral dodecad,
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A new combinatorial approach to 41

The action of Mu on i5 (£2)

and transverse (Tn) if not. A non-umbral dodecad is extraspecial (8f2) if it contains
three special octads, special if it contains just one (S12), penumbral (Z7{̂ ) if it contains
all but one of the points of an umbral dodecad, and transverse (T12) in all other cases.
Sets of more than 12 points are described by the same adjectives as their complements.
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