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0. Introduction
We shall discuss the group -0 of all Euclidean congruences (fixing the origin) of

the remarkable lattice A discovered by John Leech [6], [7] in connection with close-
packing of spheres in 24 dimensions. We preface this discussion by a description
of the Steiner system S(5, 8, 24) which appears in the construction of A and underlies
the Mathieu group M2 4. The group *0 appears to involve 12 of the 14 known
simple groups which have not yet been fitted into natural infinite series, the exceptions
being the Janko group of order 175560 and the Higman-Janko-McKay group of
order 50232960, whose orders do not divide that of #0. We shall describe the
embeddings of the Higman-Sims and McLaughlin simple groups in *0.

We use standard mathematical notations without comment. If S is a set of
vectors and x, yeS, we write S(x) for the set of vectors of <S which are orthogonal
to x, and if G is a group acting on S we use Gx (Gx y) for the group of all opera-
tions of G fixing x (fixing x and y).

1. The Steiner system S(5, 8, 24)
It is possible [l],[in an essentially unique way [13], to select 759 8-element subsets

called special octads from a 24 element set ft so that each 5 element subset of ft is
contained in just one special octad. Such a system is called a Steiner system
S(5, 8, 24). If we define the sum A + B of two sets as their symmetric difference
(A\B) u (B\A), then the power-set 2n of ft becomes a vector space over the field
of two elements, and in this space the sets of any system S(5, 8, 24) span a subspace
# of only 12 dimensions, consisting of the set ft, the empty set 0 , the 759 special
octads and their complements, and 2576 12-element sets called umbral dodecads.

This astonishing fact, proofs of which are implicit in [6], [11], simplifies Car-
michael's construction [1] for S(5, 8, 24). If ft is the set of residue classes modulo
23 together with the formal symbol oo, so that the group L = LF2(23) has a natural
action on ft, we can define # as the subspace of 2n spanned by the L-images of the
set Q consisting of 0 and the quadratic residues modulo 23. If the term #-set means
a member of # , and #„ is the set of ^-element #-sets, then # 8 is the required system
S(5, 8, 24) which is conveniently listed in full in Todd's beautiful paper [11] on M2 4.

Indeed, the Mathieu group M 2 4 ([8], [13], [11]) is commonly defined as the set
of permutations of ft fixing the system # 8 , or equivalently, the space # . We use
the following terminology to describe the orbits of 2n under M2 4. ft,, denotes the
collection of /z-element subsets of ft, and the members of ftn are called n-ads (in par-
ticular monads, duads, etc.).

Received 21 November, 1968.

[BULL. LONDON MATH. SOC, 1 (1969), 79-88]



80 J. H. CONWAY

If n < 12, an n-ad is special if it contains or is contained in a special octad, and
otherwise umbral if it is contained in an umbral dodecad, transverse if not. The same
adjectives are applied to the complementary (24—«)-ads. A dodecad is extraspecial
if it contains three special octads, special if it contains just one, penumbral if it contains
just 11 points of some umbral dodecad, and transverse if it is neither special, extra-
special, umbral, nor penumbral. In what follows the unqualified terms octad and
dodecad will always mean special octad and umbral dodecad.

Let Cl = {au ..., a2t}, and define St as {au ..., a,}, the notation being so chosen
that S8 is an octad. Then the (j + l)th entry in the (/+l)th line of Table 1 is the
number of octads intersecting St in Sj, and the corresponding entry in Table 2 is the
number of dodecads. A brief scrutiny of the tables reveals much of their mode
of construction.

TABLE 1. How many octads?

759
506 253

330 176 77
210 120 56 21

130 80 40 16 5
78 52 28 12 4 1

46 32 20 8 4 0 1
30 16 16 4 4 0 0 1

30 0 16 0 4 0 0 0 1

TABLE 2. How many dodecads ?

2576
1288 1288

616 672 616
280 336 336 280

120 160 176 160 120
48 72 88 88 72 48

16 32 40 48 40 32 16
0 16 16 24 24 16 16 0

0 0 16 0 24 0 16 0 0

2. The Leech lattice
Let {y,|/efi) be an orthonormal base for Euclidean 24-space R24: if S £ Q

let vs = £ vt (ieS): and let x = £ *i »i be the typical vector of R24. Now for any
S £ Q and any integer m, define the set [S, m] as the set of all vectors x with integral
co-ordinates x; which satisfy ^xt = 4m and also x , = m o r m + 2 (mod 4) according
as z £ S or i e S. If Sf £ 2ft and M £ Z, define [Sf, M] as the union of all the sets
[S, m] (SeS?, meM), and define the Leech lattice as the set [#, Z]. Since the
vectoi sum of [C, m] and [D, n] is [C + D, m + n], A is a lattice.

We find a spanning set for A. Let X, Y, Z be the sublattices spanned by all
vectors of the respective forms 2vK (Xe^ 8 ) , 4vT (TeQ4) , Avi — Avi (i,jed). We
show that X ^ Y. Let T = To be any tetrad, and let T+Tu ..., T+T5 be the
five octads containing T (Table 1). Since Tf+7} = (T + Tj) + (T + Tj) the union
of any two members of the set E(T) = {To, ..., T5} is an octad, and if T, U, Fare
three distinct members of H(T) we have 4vT = 2vT+u + 2vT+v — 2vu+veX, and so
y g i

Now plainly Z = [0, 0], whence Y = [0, 4Z], since Y contains Z and also a
member of [0, 4], and then X = [W, 41] since 1 2 7 and # 8 spans # . It follows
that A is spanned by the 759 vectors 2vK (K e <&8) together with any .vector of A
which has odd co-ordinates, say vn—4vo0.

Now it is easy to check that for any two vectors x, y of this set of 760 we have
x.xel6Z, x.jve8Z, and so the same is true of any two vectors x, y of A. If
x.x = 16w, we say that x has type «, and if also x is the sum of two vectors of types
a and b, that x has type nab. We write An for the set of all x e A of type n.
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It follows that An is the set of all vectors x with integral coordinates xt satisfying

(i) the coordinate-sum is a multiple of 4, say Am.

(ii) the coordinates are all congruent to m modulo 2.

(iii) the set of / for which xt takes a given value modulo 4 is a #-set.

(iv) the sum of the squares of the coordinates is 16«.

We use these to list the vectors of A2—the same ideas soon show that Ax is empty.
Conditions (ii) and (iv) leave only the shapes (28,016), (3, I23), (42,022), and
(4, 24, 019), this last symbol, for instance, denoting the typical vector with one co-
ordinate ±4 , four coordinates ±2 , and nineteen zero coordinates. Condition
(iii) now excludes this last case, and indeed (i) and (iii) leave only the three classes
Aj, A|, A4 below.

K\ has 759.27 vectors of shape (28, 016), the non-zero coordinates having positive
product and being in the places of a #-set.

A^ has 24.212 vectors of shape (3, I23), the coordinates congruent to 1 modulo
4 being in the places of a #-set.

A£ has (2
2

4).22 vectors of shape (42,022).
The reader should now be able to show that A3 = Af, u A | u A* u A|, where

A?, has 2576.211 vectors of shape (212, 012), A3, has (2
3

4).212 vectors of shape
(33, I21), A4 has 759.16.28 of shape (4, 28, 015), and A | has 24.211 of shape (5, I23).

3. The group N
A congruence of R24 which fixes the origin and also the lattice A (as a whole)

we call a rotation (of A).
Now any permutation n of fi extends to an orthogonal opeiation on IR24 when

we define (vt) n as viK, and any subset S of Q yields an orthogonal operation ss

defined by (vt)es = vt or — vt according as i$S or ieS. The operation n is a rota-
tion provided it preserves # , and so these operations form a group M = M 2 4 iso-
morphic to the Mathieu group on 24 letters. The operation es is a rotation provided
SeW, and so these operations form an elementary abelian group E = E12 of order
212 isomorphic with the additive group of # . The group N = JY24 = EM is a
splitting extension of E by M about which we prove two theorems:

THEOREM 1. A rotation k fixing a coordinate vector vt is in N.

THEOREM 2. A rotation X which fixes Af (as a whole) is in N.

We preface the proofs by a theorem of independent interest:

THEOREM 0. No rotation has prime order p > 23.

Proof. Such a rotation would have a rational matrix with some primitive pth
root of unity as an eigenvalue, and so every primitive pth root of unity must be an
eigenvalue, so that the dimension 24 is at least p — \, whence p ^ 23.

Remark. A similar argument shows that no rotation has order 13.23.

Proof of Theorem 1. Let Wj = (vj) A, so that for j ^ i Wj is a vector orthogonal
to vt, and 4yi + 4wJeA2. Our enumeration of A2 now shows that Wj = ±vk for

BULL. 1 6
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some k e fi, distinct values of j yielding distinct values of k, and so X = nes for some
permutation n of Q and some S £ O. But since the non-zero coordinates of
(2%) X are in the places of Kn, we must have Kn e # 8 for every K e ̂ g, and so
neM. Again, the coordinates of (VQ—AV^X which are congruent to 1 modulo 4
are in the places of S, so that S e # , and so A = 7ies is in N.

Proof of Theorem 2. Let H be the set of all rotations fixing A£ as a whole,
and let x = 4u,- + 4yy. Then iVx has just two orbits on A^x), one orbit consisting
of the two points ± ( 4 ^ — 4^) and the other of the 924 points +4vh±4vk for which
h, i, j , k are distinct. Since H 2 N the orbits of Hx on Ajix) must be unions of
these, and since Theorem 0 prevents Hx from having an orbit of size 926, each element
X of Hx must transform 4Vi~4vj to itself or its negative. In the first case X fixes
vh and in the second case takes vt to vj} so that in either case we have XeNby Theorem
1 (and the transitivity of JV on Q).

We remark that just as the stabiliser of k points in M2 4 is a group M2^-k on
24 —A: letters (k ^ 5), so the stabiliser of k vectors vt in N24. is a group

a splitting extension of an elementary group El2-k °f order 2i2~k by the group
M2 4_k (k < 5).

4. The group -0
We deline the group *0 as the group of all rotations of A.

THEOREM 3. N is a proper subgroup of *0.

Proof Let TeQ 4 , and S = H(T) the set defined in Section 2. Let ;/ = //s

be the operation taking vt to «,•—•£% whenever ieUeE. We show that £r = »/er

is a rotation by examining its effect on our spanning set for A.
If we suppose S = {U, V, W, X, Y, Z} and K e # 8 , we have essentially three

cases:

(i) K is the union of U and V.

(ii) K intersects U, V, W, X in two points each.

(iii) K intersects Z in three points, U, V, W, X, Y in one point each.

If y = (2vK)r}ez, we then have, respectively:

y = (2vK-4vu+v)ez = ~2vKez = -2vK

y = (2vK~2vu+v+w+x)ez = ~2vK+u+v+yy+xsz = — 2vK+u+y+w+x

y = (2vK - 3vz - va\Z) ez = 2vK\Z - 2vZnK + 3vz - y n v = (4yZXK - vj eKi

so that in each case >>eA, and since Z+TeW the vector (21;^)^ = y^z+r is also
in A. To complete the proof that £ r e *0 we need only check its effect on some
vector of A with odd co-ordinates, and since £r is an involution this has already
been done in case (iii) above.
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We now see that *0 contains the following rotations:

v9P (i#fi) (vt (i$Q)

where T = {oo, 0, 3, 15} is the fixed set of d, the appropriate E being

{{oo, 0, 3,15}, {14, 18, 8, 20}, {17, 4,16,10}, {11, 2,13, 7}, {19, 6, 9, 5}, {22, 1, 12, 21}}.

The operations a, /?, y plainly generate L, and a, /?, y, <5 generate M. It then
follows easily that a, /?, y, 5, s generate N, and so a, /?, y, 5, e, £ generate *0, for we
shall soon see that N is a maximal proper subgroup of *0.

6. TAe order of *0, #/?d ///e maximality of N
Let H be any subgroup of *0 which strictly contains N.

THEOREM 4. H is transitive on A2.

Proof. The orbits of JV on A2 are just the sets A2 (/ = 2, 3, 4) ,and so the orbits
of H must be unions of these. But the orbit of H containing A* cannot be A2

itself, by Theorem 2, nor can it be A2 u Aj or A2 u A|, by Theorem 0, and so it
must be the entire set A2.

THEOREM 5. Hx is transitive on A2(x), for any xe A2.

Proof If we take A: as va—Av^, Nx, and so Hx, contains the element a of order
23 which plainly fixes no member of A2(x), so that each orbit of A2(,v) under Hx

has order divisible by 23. But since H is transitive on A2 the same must be true of
any other x e A2, say x — 4y,+4yJ-. In this case the orbits of Nx on A2(*) consist of:

2 points ± ( 4 ^ — 4^-)

231.22 points ±4yA±4yft (/?, /,;, k distinct)

330.27 points 2vK sc (K e %8, {i, j} n K = 0 , C e #)

77.26 points 2 ^ e c ({/,;} c Ke^ 8 > CeV, \Cn{i,j}\ = 1)

22.21 * points (4vk-vn) sc (ke Q\{i, j}, CeV, \Cn {/, j}\ = 1).

(The numbers are easily found from Tables 1 and 2.)
The orbits of Hx on A2(x) must be unions of these sets and have orders divisible

by 23, and since the above numbers are congruent to 2, 4, 12, 6, 22 (modulo 23)
the only possibility is that Hx has but a single orbit on A2(A-).

From now on we omit proofs of transitivity of subgroups of *0 on configurations
of A since these proofs are usually similar to and simpler than the proofs of Theorems
4 and 5.

THEOREM 6. The order of -0 is 196560.93150.210|M22|.

THEOREM 7. N is a maximal proper subgroup of *0.
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Proofs. The cardinal of A2 is 196560 and for any xe A2 the cardinal of A2(x)
is 93150, so that |Jf| = 196560.93150.\Hx>y\ for any orthogonal pair x,yeA2.
If we take x = 4yi + 4y/, y — 4v,— 4vp then any X which fixes each of x and y fixes
y,-, and so is in JV, and so Hxy = Nx>y = iV22, a group of order 210|M22|. Since
the order of if is completely determined given only that N c= H, there can be but one
possibility for H, namely *0 itself.

7. The group • 1
We define the group • 1 as the quotient of '0 by its centre, {1, - 1 } . We examine

the action of • 1 on A2) the set of 98280 diameters of A2, each diameter being a pair
{x, —x} (xeA2).

THEOREM 8. #0 acts transitively on ordered pairs of vectors of A2 with any given
scalar product.

We omit the proof, as we promised. The number of y e A2 having scalar product
— 32, —16, —8, 0, 8, 16, 32 with a given xeA2 is

1, 4600, 47104, 93150, 47104, 4600, 1

respectively, and these are the only possible scalar products. The cases x.y = ±32
are trivial, and we have already tackled the case x.y = 0 in Theorem 5.

COROLLARY. • 1 acts on the 98280 diameters in such a way that the stabiliser of
any diameter has orbits of orders 1, 4600, 47104, 46575.

COROLLARY. *1 acts primitively on A2.

(For the order of any imprimitivity set would at the same time be a divisor of
of 98280 and a sum of numbers in the previous corollary.)

THEOREM 9. • 1 is a simple group.

Proof. We show that *0 has no normal subgroup H with { 1 , - l j c f f c ' O .
Any such H must act transitively on A2, or else its orbits would be imprimitivity sets
for -1 . Hence 13||if|. The Frattini argument now shows that *0 is the product
of if and the normaliser in '0 of a Sylow 13-subgroup of if, and so one of these
two groups has an element of order 23. But if the normaliser had an element of
order 23, *0 would have a subgroup of order 13.23, and since any group of this order
is cyclic this contradicts the remark after Theorem 0. Hence if has an element of
order 23, and so H n JV is a normal subgroup of JV of order divisible by 23, which
normal subgroup must be JV itself, whence by the maximality of JV we have H = N,
which is absurd, since JV is not normal in *0.

7. The group • oo, and some subgroups of *0
We now turn our attention to the infinite group • oo of all Euclidean congruences

of A, including translations. It is easy to see that any finite subgroup of • oo is
isomorphic to a subgroup of #0. A simplex of one of the shapes indicated in Fig. 1
is said to have type a, abc, abcafiy, abcdeaf}y5e respectively, the line joining any
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d
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FIG. 1

two points in Fig. 1 being marked with the type of the corresponding vector.
Usually this type symbol determines the class under *oo and so serves as a name,
and when it does not we adopt some convenient refinement. If S is the name of a
simplex, we use • S for the subgroup of those elements of • oo which fix every vertex
of S, *S for the subgroup of elements fixing S as a whole, and \S for the subgroup
fixing the centroid of S. Plainly - S g * S c ! S .

Any simplex S in A spans a sublattice L of A, and we use the name of S as a
name for L. The group *S is more naturally associated with L than with S, and
so we write 'S = 'L and call these groups lattice stabilisers. If the lattice L is
contained in just n copies of M, then the group 'M has index n in *L. Many results
about subgroups of *0 reduce in this way to easy numerical calculations using
Tables 1 and 2. We obtain in particular the orders of the subgroups listed in Table 3,
and many inclusions between them. The reader should be warned that each lattice
stabiliser has many different names corresponding to distinct spanning simplexes—
thus the symbols #432 and *632 represent the same group.

Identifying these subgroups of *oo with known groups is a haphazard]process,
and still incomplete. In some cases we use known characterisations of the groups
concerned, and in others the identification is immediate when we choose simple
coordinates for the vertices of S. Two cases are discussed in the next section.

The enumeration of sublattices which underlies Table 3 uses Theorem 10 below,
whose proof uses only the numbers of vectors of types 2, 3, and 4.

THEOREM 10. The midpoint of any interval of A is either
(i) a lattice point;

(ii) the midpoint of a unique interval of type 2;

(iii) the midpoint of a unique interval of type 3; or

(iv) the midpoint of just 24 mutually orthogonal intervals of type 4.

No two of the possibilities can occur simultaneously.

COROLLARY. Any interval of type n has some type nab, where a + b = %(n+k)
and k is one ofO, 2, 3, 4 (the values corresponding to the cases of Theorem 10).

We discuss some of the more interesting subgroups. The groups *2 and *3
are new simple groups, and the groups *2 = !2 and *3 = !3 are extensions of these
by automorphisms of period 2. The group !4 is N24., while *4 is JY23. The groups
•322 and '332 are the recently discovered simple groups of McLaughlin and of
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Higman and Sims, and -222 is apparently the simple group PSU6(2). The group
!333 is an extension of an elementary abelian group of order 36 by a perfect
group having a centre of order 2 and central quotient M1 2. This group underlies
Coxeter's [2] projective representation of M1 2 in the same way that !4 underlies
Todd's [11] representation of M2 4.

Professor J. G. Thompson has determined the centralisers of most of the elements
of *0, and has found several interesting subgroups in this way. In particular the
centraliser of a certain element of order 3 is a cyclic group of order 6 extended by a
simple group S of the same order as Suzuki's recently discovered simple group.
The group S has the Hall-Janko simple group of order 604800 as a subgroup, and
has also a simple subgroup of the same order as the group G2(4), which is known
to be a subgroup of Suzuki's simple group. We might remark that the extension
which appears in *0 of a cyclic group of order 2 by the Hall-Janko group acts on a
6-dimensional space, so that the Hall-Janko group has a 6-dimensional projective
representation.

8. The Higman-Sims and McLaughlin groups
D. G. Higman and C. C. Sims have described [5] a simple group of order

100|M22| as the group of even permutations of a certain graph on 100 vertices, and
J. McLaughlin has discovered a simple group of order 898128000 which is a group
of automorphisms of a graph on 275 vertices. We here identify the Higman-Sims
group with our «332, and sketch the identification of McLaughlin's group with *322.

Let X = 4vi + vn, Y = 4yy + yn, Z = 0, where i and j are distinct monads, so
that XYZ is a triangle of type 332. Then there are exactly 100 points T for which
XYZT has type 332222, namely the point P = 4vt+4vJt 22 points Qk = vn-4vk

(k e Cl\{i, j}), and 77 points RK = 2vK ({i, j} ^ Ke %8). If we say that two of
these points are incident when their difference has type 3, then the incidences are
(p> Qk), (Qk, RK) (keK), and (RK, RK.) (K n K' = {/,;}), and the incidence graph
is visibly identical with the Higman-Sims graph.

Now X- Y + P-Z = Svh so that the stabiliser in -oo of X,Y,Z, P is a sub-
group of N, and in fact this stabiliser is the group M22 of permutations of Q fixing
/ and j . We identify *332 with the Higman-Sims group, and at the same time
provide an easy proof of the latter's existence, by showing that • oo has operations
fixing X, Y, Z but disturbing P. For let X be an operation of • oo such that XI — 2vc,
YX = 2vD, Zl = 0, where C e # 1 2 , De#12, C + De<#8. (Such X exist by the transi-
tivity of 'oo on triangles of type '332.) Then the subgroup H of those operations
of N fixing each of XX,YX, ZX fixesjio'one^of the 100 points TX which differ by
type 2 vectors from each of XX, YX, ZX, and so the group XHX~l has operations fixing
each of X, Y, Z, but not P. (The argument has proved transitivity of • oo on tetra-
hedra of type 332222 given transitivity on triangles of type 332.)

Sims [10] has shown that the doubly transitive group on 176 letters described
by G. Higman is isomorphic to the Higman-Sims group. G. Higman's group is
the automorphism group of a ' geometry' of 176 ' points' and 176 ' quadrics', there
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being 50 points on each quadric and 50 quadrics through each point. Now there
are 352 points W such that WX has type 3 while W Y and WZ have type 2, and
these naturally form 176 pairs PK = {AK, BK} (Ke^8, K n {i,j} = {/}), AK = 2vK,
and BK = X — AK. There are similarly 176 pairs QK = {CK, DK} obtained by inter-
changing the roles of / and j . If we take our ' points ' as the pairs PK, and ' quadrics'
as pairs QK, and say PK is on QK> if and only if \K n K'\ = 2, then we obtain G. Hig-
man's geometry and another proof of the identity of his group with the Higman-
Sims group.

If we consider instead of a triangle of type 322, we find that there are just 275
points which complete it to a tetrahedron of type 322222, and that the incidence
graph (x and y are incident if and only if x—y has type 3) is now McLaughlin's
graph. The details of the identification are rather complicated, but the result is a
fairly simple definition of McLaughlin's graph. If we take for our triangle X YZ
X = 0, Y = 4vi + vn, Z = —4vj + vn (i # j), then the 275 points fall naturally into
three sets—we have 22 points Uk (k e Q\{i, j}), 11 points VK ({i, j} c Ke #8) , and
176 points WK> (K' e # 8 , {i, j} n K' = {/})—and the incidences can be simply described
by combinatorial conditions on k, K, K'.

9. Miscellaneous remarks
00

Let un be the number of lattice vectors of type n, and let F(x) = ^ M ^ " , where
o

q = e2ttinx. Then from Hecke's work it follows that F(T) is a modular form of
OO

dimension —12, and so is a linear combination of the basic forms ZT(«)#" a r |d
00 1

1 +c^a11(n)qn, where T(W) is Ramanujan's famous function, <r<n(ri) is the sum of
the 11th powers of the divisors of n, and c = 65520/691. (For the relevant modular
form theory see [41 or [3], noting that [3] has the wrong value for c.) Since
w0 = 1, uy = 0, we obtain the exact formula

65520,
M« = " 6 9 T ( < r i l ( n ) " T ( n ) ) -

Ramanujan's remarkable congruence T(«) = o"n(«) (mod 691) is particularly
evident, and indeed we can use the formula to find congruences for x(n) modulo
any prime power dividing g/c, where g is the order of *0. Thus to modulus 23 we
have un = un(ot), where wn(a) is the number of vectors of An which are fixed by the
element a of order 23. But the fixed vectors of a are those of the shape ao^ + bv^^,
and since this has type n if and only if 16« = a2 + 2362 we obtain x(n) = Cj^n) = 0
(mod 23) should n be a non-residue modulo 23.

A more exciting prospect is to use the modular form theory to determine new
lattices and possibly therefore some new simple groups. I have already used the
formula above together with the argument of Theorem 10 to show that A is charac-
terised by the fact that (on a suitable scale) it is a unimodular lattice in which every
squared length is an even integer greater than 2. It then follows from some work
of V. Niemeier that there are just 24 even unimodular lattices in 24 dimensions.
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TABLE 3

Name
•0
•1
•2
•3
•4
•5
•622
•632
•7
•822
•832
'842
•933

•942
•IO33
•IO42
•1143
•1152

Order
22 239547211.13.23
2 2 1 3 9 5 4 7 2 11.13.23
21 836537.11.23
21O37537.11.23
21 8325.7.11.23
2 8 3 6 537.l l
21 6365.7.11
21O335.7.11.23
2932537.11
2 1 8 3 6 537.11.23
2736537.11
21 5325.7
25375.11
27325.7.11.23
21 O32 537. l l
21 7325.7.11
21 O325.7
28365.7

Structure
New perfect
New simple
New simple
New simple
2 1 1 M23
Mc.2
PSU6(2).2(?)
M24
HS
•2
Mc

25.2*.AS

35.M1X.2
M23
HS2
21O.M22

2*.A8
PSU4(3).2

Name
•222
•322
•332
•333
.422
.432
•433
•442
•443
•522
•532
•533
•542
•633

* 2 = !2
• 3 = !3

*4
!4

!333
!442

Order
21 5365.7.11
2 7 3 6 537.11
2932537.11
24375.11
21 7325.7.11
27325.7.11.23
21 O325.7
21 2325.7
2 7 3 2 5.7
2736537.11
28365.7
24 32 53 7
27325.7.11
26335.11
21 936537.11.23
2 U 3 7 537.11.23
21 9325.7.11.23
222 335.7.11.23
27395.11
21 5345.7

Structure
PSU6(2) (',
Mc

HS
3 5 .M U

21O.M22

24. A8

25.2*.A7
M21.2
Mc

PSU4(3).2
PSU3(5)
M22
Ml2

C3).2

2I2.M24
36.2.M1 2
25.2*.A9

HS, Mc, p" denote respectively the Higman-Sims group, the McLaughlin group, and the elemen-
tary group of order pn. A.B denotes an extension of the group A by the group B. The notation
is otherwise standard.

This work can be regarded as a theorem on even unimodular quadratic forms by
passing to the ' norm-forms' of the lattices concerned.

The so-called ' mass-formula' of Siegel [9] gives the sum of the reciprocals of
the orders of the groups of automorphs of these forms, which is approximately
10"14, so that each of the groups has order at least 1014. (This gives another proof
of Theorem 3.) Unfortunately the corresponding constant in 32 dimensions (the
next similar case) is approximately 108, so that there are at least 108 even unimodular
lattices in this dimension, and most of them could have very small groups. We
must either add further conditions or search for lattices of other shapes. I have not
yet had much success with these ideas, but have high hopes of the method.
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