



## Introduction in Generalized Weyl Poisson algebras

## Maram Alossaimi

The 8<sup>th</sup> International Congress on Fundamental and Applied Sciences Conference

19 - 21 October 2021

Maram Alossaimi (Sheffield University) Introduction in Generalized Weyl Poisso 19 - 21 October 2021 1/13

A nonempty set S' with binary operator  $(\cdot)$  is a semigroup  $(S', \cdot)$  if for all  $g,h,k \in S'$ 

1.  $g \cdot h \in S'$ , and 2.  $g \cdot (h \cdot k) = (g \cdot h) \cdot k$ .

A nonempty set S with binary operator (+) is a group (S,+) if for all  $g, h, k \in S$ 1.  $g + h \in S$ , 2. g + (h + k) = (g + h) + k,

3.  $\exists e \in S$  s.t. e + g = g + e = g, and

4.  $\exists g^{-1} \in S \text{ s.t. } g + g^{-1} = g^{-1} + g = e.$ 

5. S is an abelian if g + h = h + g.

A nonempty set V with two binary operators (+) and (×) is a vector space over a field K if for all  $\lambda_1, \lambda_2 \in K$  and  $v, u \in V$ .

1. (V, +) is an abelian group,

- 2.  $\lambda_1 \times v \in V$ ,
- 3.  $\lambda_1 \times (u + v) = \lambda_1 \times u + \lambda_1 \times v$ ,
- 4.  $(\lambda_1 + \lambda_2) \times v = \lambda_1 \times v + \lambda_2 \times v$ .
- 5.  $\lambda_1 \times (\lambda_2 \times v) = (\lambda_1 \lambda_2) \times v$ , and
- 6.  $1 \times v = v$ .



Figure 1: Algebraic structure

## Outline

- Lie algebras
- 0 The n'th Weyl algebra
- Generalized Weyl algebras■ Example
- Poisson algebras
- Generalized Weyl Poisson algebras
   Lemma
  - Example
- 6 References

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ● ● ● ●

## Definition 1

A vector space L over a field K is called a Lie algebra if there exists a bilinear product [-,-] on L, called a Lie bracket, which is anti-commutative and satisfies the Jacobi identity: [a,b] = -[b,a] and

$$[a,[b,c]]+[b,[c,a]]+[c,[a,b]]=0 \ \, {\rm for \ all} \ \, a,b,c\in L.$$



### Definition 2

Let K be a field. An associative K-algebra  $A_n$  that is generated by 2n elements  $X_1, \ldots, X_n, Y_1, \ldots, Y_n$ , subject to the relations:

 $[Y_i, X_j] = \delta_{ij}$  and  $[X_i, X_j] = [Y_i, Y_j] = 0$  for all i, j,

is called the *n*'th Weyl algebra  $A_n(K)$ , where  $\delta_{ij}$  is the Kronecker delta function, i.e.

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

Maram Alossaimi (Sheffield University) Introduction in Generalized Weyl Poisso 19 - 21 October 2021 5 / 13

◆□▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □▶</p>

## Definition 3 [Bav1]

Let R be a ring,  $\sigma = (\sigma_1, \ldots, \sigma_n)$  be an n-tuple of commuting automorphisms of R,  $a = (a_1, \ldots, a_n)$  be an n-tuple of elements in the centre Z(R), such that  $\sigma_i(a_j) = a_j$ for all  $i \neq j$ . The generalized Weyl algebra (GWA)  $\mathcal{A} = R[X, Y; \sigma, a]$  of rank n is a ring generated by R and 2n elements  $X_1, \ldots, X_n, Y_1, \ldots, Y_n$  subject to the defining relations:

$$Y_i X_i = a_i, \quad X_i Y_i = \sigma_i(a_i),$$
$$X_i d = \sigma_i(d) X_i, \quad Y_i d = \sigma_i^{-1}(d) Y_i \text{ for all } d \in R,$$
$$[X_i, X_j] = [X_i, Y_j] = [Y_i, Y_j] = 0 \text{ for all } i \neq j,$$

where [x, y] = xy - yx.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < の < の </p>

#### Example 4 [Bav1]

The Weyl algebra  $A_n$  is a GWA  $\mathcal{A} = R[X, Y; \sigma, a]$  of rank n, where

 $R = K[H_1, \ldots, H_n]$  is a polynomial ring in *n* variables,  $\sigma = (\sigma_1, \ldots, \sigma_n)$  such that

$$\sigma_i(H_j) = H_j - \delta_{ij}$$
 and  $a = (H_1, \dots, H_n),$ 

where  $\delta_{ij}$  is the Kronecker delta function. The map

 $A_n \to \mathcal{A}, X_i \mapsto X_i, Y_i \mapsto Y_i, \text{ and } Y_i X_i \mapsto H_i \text{ for all } i = 1, \dots, n$ 

is an algebra isomorphism.

◆□▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □▶</p>

## Definition 5

A (commutative) K-algebra  $(D, +, \cdot)$  is called a *Poisson* algebra if there exists bilinear product  $\{-,-\}$  on D, called a Poisson bracket, such that  $(D, \{-,-\})$  is a Lie algebra and Leibniz rule holds, i.e.

$$\{a \cdot b, c\} = \{a, c\} \cdot b + a \cdot \{b, c\} \text{ for all } a, b, c \in D.$$



#### Definition 6 [Bav2]

Let *D* be a Poisson algebra,  $\partial = (\partial_1, \ldots, \partial_n) \in \operatorname{PDer}_K(D)^n$  be an *n*-tuple of commuting Poisson derivations of *D*,  $a = (a_1, \ldots, a_n) \in \operatorname{PZ}(D)^n$  be an *n*-tuple of Poisson central elements of *D* such that  $\partial_i(a_j) = 0$  for all  $i \neq j$ . The commutative GWA

$$A = D[X, Y; a] = D[X_1, \dots, X_n, Y_1, \dots, Y_n] / (X_1 Y_1 - a_1, \dots, X_n Y_n - a_n)$$

is a Poisson algebra with Poisson bracket defined by the rule: For all i, j = 1, ..., nand  $d \in D$ ,

$$\{Y_i, d\} = \partial_i(d)Y_i, \ \{X_i, d\} = -\partial_i(d)X_i, \ \{Y_i, X_i\} = \partial_i(a_i), \text{ and} \\ \{X_i, X_j\} = \{X_i, Y_j\} = \{Y_i, Y_j\} = 0 \text{ for all } i \neq j.$$

This Poisson algebra is denoted by  $A = D[X, Y; a, \partial]$  and is called the *generalized* Weyl Poisson algebra of rank n (GWPA) where  $X = (X_1, \ldots, X_n)$  and  $Y = (Y_1, \ldots, Y_n).$ 

#### Lemma 7 [Bav2]

Let  $A = D[X, Y; a, \partial]$  be a GWPA of rank n. Let  $\mathcal{A} = D[X, Y; \partial, \partial(a)]$  be a Poisson algebra,  $\partial(a) = (\partial_1(a_1), \ldots, \partial_n(a_n))$  with Poisson bracket,

$$\{Y_i, d\} = \partial_i(d)Y_i, \ \{X_i, d\} = -\partial_i(d)X_i, \ \{Y_i, X_i\} = \partial_i(a_i), \text{ and} \\ \{X_i, X_j\} = \{X_i, Y_j\} = \{Y_i, Y_j\} = 0 \text{ for all } i \neq j.$$

Then the elements  $X_1Y_1 - a_1, \ldots, X_nY_n - a_n \in PZ(\mathcal{A})$  and the GWPA  $A = D[X, Y; a, \partial]$  is a factor algebra of the Poisson algebra  $\mathcal{A}$ ,

$$A \cong \mathcal{A}/(X_1Y_1 - a_1, \dots, X_nY_n - a_n).$$

◆□▶ < @ ▶ < @ ▶ < 回 ≥ < 0 < 0</p>

#### Example 8 [Bav2]

The classical Poisson polynomial algebra  $P_{2n} = K[X_1, \ldots, X_n, Y_1, \ldots, Y_n]$  with Poisson bracket  $\{Y_i, X_j\} = \delta_{ij}$  and  $\{X_i, X_j\} = \{Y_i, Y_j\} = 0$  for all i, j, where  $\delta_{ij}$  is the Kronecker delta function, is a GWPA

$$P_{2n} \cong K[H_1, \dots, H_n][X, Y; a, \partial\},\$$

where  $K[H_1, \ldots, H_n]$  is a Poisson polynomial algebra with trivial Poisson bracket,  $a = (H_1, \ldots, H_n), \ \partial = (\partial_1, \ldots, \partial_n)$  and  $\partial_i = \frac{\partial}{\partial H_i}$  (via the isomorphism of Poisson algebras

$$P_{2n} \to K[H_1, \ldots, H_n][X, Y; a, \partial], X_i \mapsto X_i, Y_i \mapsto Y_i, X_i Y_i \mapsto H_i)$$

・ロト < 得 ト < 目 × 目 × 回 × 回 × の < </li>

#### References

- [Bav1] V. V. Bavula, Generalized Weyl algebras and their representations. St. Petersburg Math. J, 4 (1993), no. 1, 71–92.
- [Bav2] V. V. Bavula, The Generalized Weyl Poisson algebras and their Poisson simplicity criterion. Letters in Mathematical Physics, 110 (2020), 105–119.
- [GoWa] K. R. Goodearl and R. B. Warfield. An introduction to noncommutative noetherian rings. 2nd ed. New York: Cambridge University Press. (2004), pages 1–85, 105–122 and 166–186.
  - [Oh2] S.-Q. Oh, Poisson polynomial rings. Communications in Algebra, 34 (2006), 1265–1277.

# Thank you for listening

Maram Alossaimi (Sheffield University) Introduction in Generalized Weyl Poisso 19 - 21 October 2021 13 / 13

Poisson algebra applications:

- Skew polynomial rings
- [MyOh] N.-H. Myung and S.-Q. Oh, A construction of an Iterated Ore extension. arXiv:1707.05160v2 (2018).
  - Poisson polynomial ring
  - [Oh2] S.-Q. Oh, Poisson polynomial rings. Communications in Algebra, 34 (2006), 1265–1277.
  - Poisson modules and Poisson enveloping algebras
  - [Oh1] S.-Q. Oh, Poisson enveloping algebras. Communications in Algebra, 27 (1999), 2181–2186.
  - Generalised Weyl algebras and generalised Weyl Poisson algebras
  - [Bav1] V. V. Bavula, Generalized Weyl algebras and their representations. St. Petersburg Math. J, 4 (1993), no. 1, 71–92.
  - [Bav2] V. V. Bavula, The Generalized Weyl Poisson algebras and their Poisson simplicity criterion. Letters in Mathematical Physics, 110 (2020), 105–119.

- Quantization and deformation algebras
- [BPR] C. Beem, W. Peelaers and L. Rastelli, Deformation quantization and superconformal symmetry in three dimensions. *Comm. Math. Phys.* 354 (2017), 345–392.
- Semiclassical limits
- [ChOh] E.-H. Cho and S.-Q. Oh, Semiclassical limits of Ore extensions and a Poisson generalized Weyl algebra. Lett. Math. Phys. 106 (2016), 997–1009.
- Star product and Poisson algebras
- [EtSt] P. Etingof and D. Stryker, Short star-products for filtered quantizations, I. arXiv:1909.13588v5 (2020).
- Poisson manifolds.
- [Kon] M. Kontsevich, Deformation quantization of Poisson manifolds. arXiv:q-alg/9709040v1 (1997).
- Hamiltonian systems.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ● ● ● ●