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POISSON POLYNOMIAL RINGS

Sei-Qwon Oh
Department of Mathematics, Chungnam National University,
Taejon, South Korea

Let A be a Poisson algebra with Poisson bracket �·� ·�A and let �� � be linear maps
from A into itself. Here we find a necessary and sufficient condition for the pair ��� ��

such that the polynomial ring A�x	 has the Poisson bracket

�a� b� = �a� b�A� �a� x� = ��a�x + ��a�

for all a� b ∈ A and construct a class of Poisson algebras including the coordinate rings
of Poisson 2× 2-matrices and Poisson symplectic 4-space.

Key Words: Derivation; Poisson algebra.

2000 Mathematics Subject Classification: Primary 17B63; Secondary 16W25.

Many quantum groups have been constructed from Poisson algebras which
are polynomial rings with certain Poisson brackets. In this article, we find that
many Poisson brackets on polynomial rings are given by derivations with certain
conditions, which may be considered as a Poisson version of a skew polynomial
ring constructed by an endomorphism � and an �-derivation. Moreover a Poisson
structure of a class of Poisson algebras including the coordinate rings of Poisson
2× 2-matrices and Poisson symplectic 4-space is investigated. Assume throughout
the article that k is a field and that all Poisson algebras are commutative and finitely
generated as a k-algebra.

1. POISSON POLYNOMIAL RINGS

1.1. Let A be a Poisson algebra over k. A k-linear map � � A −→ A is said to be
a derivation (respectively Poisson derivation) on A if it satisfies (i) (respectively (i)
and (ii)) of the following conditions (for all a� b ∈ A):

(i) ��ab� = ��a�b + a��b�;
(ii) ���a� b�� = ���a�� b�+ �a� ��b��.
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Theorem. Let �� � be k-linear maps on a Poisson algebra A with Poisson bracket
�·� ·�A. Then the polynomial ring A	x
 becomes a Poisson algebra with Poisson bracket

�a� b� = �a� b�A� �a� x� = ��a�x + ��a� (1.1)

for all a� b ∈ A if and only if � is a Poisson derivation and � is a derivation such that

���a� b�A�− ���a�� b�A − �a� ��b��A = ��a���b�− ��a���b� (1.2)

for all a� b ∈ A. In this case, we denote the Poisson algebra A	x
 by A	x� �� �
p and if
� = 0, then we simply write A	x� �
p for A	x� �� 0
p.

Proof. If A	x
 is a Poisson algebra with the Poisson bracket (1.1) then we have that

�ab� x� = ��ab�x + ��ab�

a�b� x�+ �a� x�b = �a��b�+ ��a�b�x + �a��b�+ ��a�b�

for all a� b ∈ A, and thus both � and � are derivations on A. Moreover, since the
Poisson bracket �·� ·� satisfies the Jacobi identity, we have that

0 = ��a� b�� x�+ ��b� x�� a�+ ��x� a�� b�

= ����a� b�A�− ���a�� b�A − �a� ��b��A�x

+ ���a� b�A�− ���a�� b�A − �a� ��b��A − ��a���b�+ ��a���b�

for all a� b ∈ A. Hence � is a Poisson derivation and � is a derivation such that the
pair ��� �� satisfies (1.2).

Conversely, we suppose that � is a Poisson derivation and � is a derivation
such that ��� �� satisfies (1.2). Define a k-bilinear map �·� ·� � A	x
×A	x
−→A	x
 by

�axi� bxj� = ��a� b�A + jb��a�− ia��b��xi+j + �jb��a�− ia��b��xi+j−1 (1.3)

for all monomials axi and bxj in A	x
. Note that the case for i = 0� j = 1, and b = 1
in (1.3) is (1.1). Then, by (1.3), we have that �f� g� = −�g� f� for all f� g ∈ A	x
 and
that, for a fixed element f ∈ A	x
, k-linear maps

�f� ·� � A	x
 −→ A	x
� g �→ �f� g�

�·� f� � A	x
 −→ A	x
� g �→ �g� f�

are derivations on A	x
 since � and � are derivations. It remains to check the Jacobi
identity: for axi� bxj� cxk ∈ A	x
,

{{
axi� bxj

}
� cxk

}+ {{
bxj� cxk

}
� axi

}+ {{
cxk� axi

}
� bxj

} = 0� (1.4)

We proceed by the induction on i� j� k. The case i = j = k = 0 in (1.4) is trivial.
The case i = 1� j = k = 0� a = 1 is shown immediately by (1.2). Suppose that the
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case for j = k = 0 in (1.4) holds and we check the case for i+ 1� j = k = 0:

{{
axi+1� b

}
� c
}+ {

�b� c�� axi+1
}+ {{

c� axi+1
}
� b

}
= ({{

axi� b
}
� c
}+ {

�b� c�� axi
}+ {{

c� axi
}
� b

})
x

+ axi���x� b�� c�+ ��b� c�� x�+ ��c� x�� b��

= 0�

by the Leibniz rule and the induction hypothesis. Hence (1.4) for the case j = k = 0
holds. Now check (1.4) for the case k = 0 using induction on j and the general case
using induction on k. The proof is complete. �

1.2 Lemma. Let �, � be derivations on a Poisson algebra A generated by a set X as
an algebra.

(i) If ��a� = ��a� for all a ∈ X, then � = �.
(ii) If ���a� = ���a� for all a ∈ X, then �� = ��.
(iii) If � satisfies ���a� b�� = ���a�� b�+ �a� ��b�� for all a� b ∈ X, then � is a Poisson

derivation.
(iv) If � and � satisfy (1.2) for all elements in X, then � and � satisfy (1.2) for all

elements in A.

Proof. It is proven by a straightforward computation combined with
induction. �

1.3 Lemma. Let c ∈ k, u ∈ A and let ��  be Poisson derivations on A such that

� = �� �a� u� = ��+ ��a�u (1.5)

for all a ∈ A. Then the polynomial ring A	y� x
 becomes a Poisson algebra with Poisson
bracket

�a� y� = ��a�y� �a� x� = �a�x� �y� x� = cyx + u (1.6)

for all a ∈ A.
The Poisson algebra A	y� x
 with Poisson bracket (1.6) is denoted by

�A� �� � c� u�.

Proof. By 1.1, there exists a Poisson algebra A	y� �
p with Poisson bracket �a� y� =
��a�y for all a ∈ A. The derivation  is extended to a derivation, still denoted by
, to A	y� �
p by setting �y� = cy and � = u d

dy
is a derivation on A	y� �
p satisfying

��y� = u and ��a� = 0 for all a ∈ A. Let us prove that, for all f� g ∈ A	y� �
p,

��f� g�� = ��f�� g�+ �f� �g��

���f� g�� = ���f�� g�+ �f� ��g��+ ��f��g�− �f���g�� (1.7)
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If f� g ∈ A then (1.7) holds trivially. Hence it is enough to prove (1.7) for the
case f = a ∈ A and g = y by 1.2. Now

��a� y�� = ���a�y� = ��a��y�+ ���a��y

= c��a�y + ���a��y = ��a�� y�+ �a� �y��

���a� y�� = ����a�y� = ��a�u = �a� u�− �a�u

= ���a�� y�+ �a� ��y��+ ��a��y�− �a���y��

as claimed. Therefore  is a Poisson derivation on A	y� �
p such that the pair �� ��
satisfies (1.2). It follows that, by 1.1, there exists the Poisson algebra A	y� x
 =
A	y� �
p	x� � �
p with Poisson bracket (1.6). �

2. EXAMPLES

2.1 Poisson k�y�x	. Let k	y
 be a polynomial ring. Note that k	y
 is a Poisson
algebra with trivial Poisson bracket. For any f� g ∈ k	y
, set

� = f
d

dy
� � = g

d

dy
�

Then � is a Poisson derivation, � is a derivation and ��� �� satisfies (1.2) clearly.
Hence, by 1.1, k	y� x
 = k	y
	x� �� �
p has the Poisson bracket

�y� x� = fx + g�

2.2 Poisson n-Space. Let � = ��ij� be a skew-symmetric n× n-matrix. Note that
k	x1
 is a Poisson algebra with trivial Poisson bracket. For each i = 2� � � � � n, denote
the derivation �1ix1

�
�x1

+ · · · + �i−1�ixi−1
�

�xi−1
on k	x1� � � � � xi−1
 by �i. Since �2 is a

Poisson derivation on k	x1
, there exists a Poisson algebra k	x1
	x2� �2
. Suppose that
there exists a Poisson algebra B = k	x1
	x2� �2
p · · · 	xn−1� �n−1
p. It is checked using
1.2 that �n is a Poisson derivation on B, and hence there exists a Poisson algebra
B	xn� �n
p = k	x1� � � � � xn
 by 1.1. Therefore, by induction on n, the coordinate ring
��kn� = k	x1� � � � � xn
 of n-space kn is a Poisson algebra with Poisson bracket

�xi� xj� = �ijxixj

for all i� j. (See Oh, 1999, §2.)

2.3 Poisson 2n-Space. The polynomial ring A = k	y1� x1� � � � � yn� xn
 has the
Poisson bracket defined by

�f� g� = ∑
i

�f

�yi

�g

�xi
− �g

�yi

�f

�xi

for all f� g ∈ A, which is given in Chari and Pressley (1994, p. 18). Setting Ai to be
the Poisson subalgebra of A generated by y1� x1� � � � � yi� xi, Ai can be presented by

Ai = Ai−1	yi� 0
p	xi� 0� �i
p = �Ai−1� 0� 0� 0� 1��
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where �i is defined by

�i�yj� = 0� �i�xj� = 0� �i�yi� = 1

for all j = 1� � � � � i− 1.

2.4 Poisson M2�k�. For the Poisson algebra k	b� c
 with trivial Poisson bracket,
that is, �b� c� = 0, the derivation � = −2b �

�b
− 2c �

�c
on k	b� c
 is clearly a Poisson

derivation. By 1.3, there exists a Poisson algebra

�k	b� c
� ��−�� 0� 4bc�

which is the Poisson algebra ��M2�k�� = k	b� c
	a� d
 with Poisson bracket

�b� c� = 0� �b� a� = −2ba� �c� a� = −2ca�

�b� d� = 2bd� �c� d� = 2cd� �a� d� = 4bc�

given in Oh (1999, 2.9), Korogodski and Soibelman (1998, Example 3.2.9), and
Vancliff (1999, 3.13).

2.5 Generalization of 2.3 and 2.4. Let � be a Poisson derivation on a Poisson
algebra A, and let u be a central Poisson element of A, that is, �a� u� = 0 for all
a ∈ A. Then we have a Poisson algebra �A� ��−�� c� u� for any c ∈ k since ��  = −�

and u satisfy (1.5). Observe that �A� ��−�� c� u� is a generalized form of 2.3 and 2.4.

2.6 Poisson Mn�k�. It is well known that the coordinate ring ��Mn�k�� =
k	xij � i� j = 1� � � � � n
 of n× n matrices Mn�k� is a Poisson algebra with Poisson
bracket

�xij� xrs� =




2xijxrs i = r� j < s

2xijxrs i < r� j = s

0 i < r� j > s

4xisxrj i < r� j < s�

That is, each subalgebra of ��Mn�k�� generated by four generators

xij xis

xrj xrs

is equal to the Poisson algebra ��M2�k��. Observe that ��Mn�k�� can be presented
by an iterated Poisson polynomial ring

k	x11
	x12� �12� �12
p	x21� �21� �21
p	x13� �13� �13
p	x22� �22� �22
p · · · 	xnn� �nn� �nn
p�

Maram

Maram

Maram
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where �rs� �rs are defined by

�rs�xij� =




2xij i = r� j < s

2xij i < r� j = s

0 i < r� j > s

0 i < r� j < s

�rs�xij� =




0 i = r� j < s

0 i < r� j = s

0 i < r� j > s

4xisxrj i < r� j < s�

2.7 Poisson Symplectic and Euclidean 4-Spaces. Let

� =
(

0 �12
−�21 0

)
� P = �p1� p2�� Q = �q1� q2��

where �12� p1� p2� q1� q2 ∈ k such that p1 �= q1� p2 �= q2. Since � = −q1y1
�
�y1

is a
Poisson derivation on k	y1
, there exists a Poisson algebra A = k	y1
	x1� �
p by 1.1.
Define derivations ��  on A by

� = �12y1
�

�y1
+ �p2 − �12�x1

�

�x1

 = −�q1 + �12�y1
�

�y1
+ �q1 − p2 + �12�x1

�

�x1
�

It is easy to check using 1.2 that � and  are Poisson derivations on A such
that � = �. Setting u = −�q1 − p1�y1x1 ∈ A, the triple ��� � u� satisfies (1.5), and
thus there exists a Poisson algebra AP�Q

2�� = �A� �� �−q2� u� by 1.3. That is, AP�Q
2�� =

k	y1� x1� y2� x2
 has the following Poisson bracket:

�y1� y2� = �12y1y2

�x1� y2� = �p2 − �12�x1y2

�y1� x2� = −�q1 + �12�y1x2

�x1� x2� = �q1 − p2 + �12�x1x2

�x1� y1� = q1y1x1

�x2� y2� = q2y2x2 + �q1 − p1�y1x1�

The Poisson algebra AP�Q
2�� is said to be the coordinate ring of Poisson

symplectic (respectively Euclidean) 4-space if

� =
(

0 1
−1 0

)
� P = �0� 0�� Q = �−2�−2�

(
respectively � =

(
0 1
−1 0

)
� P = �−2�−2�� Q = �0� 0�

)
�
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Observe that the coordinate ring of Poisson Euclidean 4-space is Poisson isomorphic
to ��M2�k�� given in 2.4.

3. PRIME POISSON IDEALS OF A�x���p

Here we develop a technique to find prime Poisson ideals of Poisson
polynomial rings and classify the prime Poisson ideals of AP�Q

2�� given in 2.7.

3.1 Definition.

(i) An ideal I of a Poisson algebra A is said to be a Poisson ideal of A if �I� A� ⊆ I .
A Poisson ideal P is said to be a prime Poisson ideal if it is a prime ideal.

(ii) A Poisson derivation � on a Poisson algebra A is said to be inner if there exists
an invertible element a ∈ A such that ��b� = a−1�b� a� for all b ∈ A.

(iii) Let A be a Poisson algebra and let � be a set of linear maps from A into itself.
An ideal (respectively Poisson ideal) I of A is said to be a �-ideal (respectively
�-Poisson ideal) or �-stable if ��I� ⊆ I for all � ∈ �.

(iv) Let � be a Poisson derivation on a Poisson algebra. A Poisson algebra is said to
be Poisson simple (respectively �-Poisson simple) if it has no nontrivial Poisson
ideal (respectively �-Poisson ideal).

(v) An element a of a Poisson algebra A is said to be Poisson normal if �a� A� ⊆ aA.
(vi) Let � be a Poisson derivation of a Poisson algebra A. An �-ideal P of A is said

to be an �-prime Poisson ideal if it is a prime Poisson ideal.

3.2 Lemma. (i) Let S be a multiplicative subset of a Poisson algebra A. Then any
derivation on A is uniquely extended to S−1A and

�S−1A�	x� �′� �′
p � S−1�A	x� �� �
p��

where �′� �′ are the extensions of �� � on S−1A, respectively.

(ii) Let J be a Poisson ideal of B = A	x� �� �
p and, for each non-negative
integer n, let Jn be the set of leading coefficients of polynomials in J with degree n,
together with zero. Then each Jn is a Poisson ideal of A with J0 ⊆ J1 ⊆ J2 ⊆ · · · and
��Jn� ⊆ Jn+1� In particular, the set of leading coefficients of polynomials in J , together
with zero, is an �-Poisson ideal of A.

(iii) Let I be an ��� ��-Poisson ideal of A. Then IA	x� �� �
p is a Poisson ideal
of A	x� �� �
p and

A	x� �� �
p/IA	x� �� �
p � �A/I�	x� �̄� �̄
p�

where �̄ and �̄ are the maps induced by � and �, respectively.

(iv) A Poisson algebra A	x� �
p	y� 
p such that �A� ⊆ A and �x� = bx for
some element b ∈ A is equal to A	y� ′
p	x� �′
p� where ′ = �A and �′ � A	y� ′
p −→
A	y� ′
p is defined by

�′�a� = ��a�� �′�y� = −by

for all a ∈ A.

Maram
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Proof. (i) McConnell and Robson (1987, 15.1.23).

(ii) Clearly, Jn is a Poisson ideal and ��Jn� ⊆ Jn+1. Hence the set J ′ of leading
coefficients of polynomials in J , together with zero, is an �-Poisson ideal since
J ′ = ⋃

n Jn.

(iii) The ideal IA	x� �� �
p is a Poisson ideal of A	x� �� �
p since �a� x� =
��a�x + ��a� for all a ∈ I . Moreover, there exists a Poisson isomorphism from
A	x� �� �
p/IA	x� �� �
p onto �A/I�	x� �̄� �̄
p defined by

�a0 + · · · + anx
n�+ IA	x� �� �
p �→ �a0 + I�+ · · · + �an + I�xn�

(iv) It is trivial because of �x� y� = axy in A	x� �
p	y� 
p. �

3.3 Lemma. Let B = A	x� x−1� �
p. Then B is Poisson simple if and only if:

(i) A is �-Poisson simple;
(ii) For each positive integer n, n� is not inner.

Proof. Suppose that B is Poisson simple. If I is an �-Poisson ideal of A, then IB
is a Poisson ideal of B by 3.2(iii). If n� is inner determined by an invertible element
a ∈ A, then a−1xn − 1 is a Poisson central element of B. Thus �a−1xn − 1�B is a
nontrivial Poisson ideal of B.

Conversely, let J be a nonzero Poisson ideal of B and let C = A	x� �
p ⊆ B.
Then J ∩ C is a nonzero Poisson ideal of C. Choose a nonzero element f ∈ J ∩
C such that f has the minimal degree n among nonzero elements in J ∩ C. Since
�J ∩ C�n is a nonzero �-Poisson ideal of A by 3.2(ii), we may assume that the leading
coefficient of f is unity. Set

f = xn + an−1x
n−1 + · · · + a0

and suppose that there exists ai �= 0 for some i. Since �f� x�x−1 and �r� f�− n��r�f
are elements of J ∩ C with degree less than n, aiA is a nonzero �-Poisson ideal and

�n− i�ai��r� = �r� ai�

for all r ∈ A, and thus ai is invertible and �n− i�� is inner, a contradiction. It follows
that J = B since f = xn ∈ J is an invertible element of B. �

3.4 Proposition. Let B = A	x� �
p.

(i) The prime Poisson ideals of B containing x are precisely the ideals of the form
I + xB, where I is a prime Poisson ideal of A.

(ii) If I is an �-prime Poisson ideal of A then IB is a prime Poisson ideal of B.
(iii) If P is a prime Poisson ideal not containing x then P ∩ A is an �-prime Poisson

ideal of A.
(iv) If n� is inner for some positive integer n, then there exists a Poisson central element

y ∈ B such that y is transcendental over A and B is a finitely generated A	y
-module.
(v) If A is �-Poisson simple and there is no positive integer n such that n� is inner

then every prime Poisson ideal of B contains x.

Maram

Maram
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Proof. (i) Since x is a Poisson normal element, xB is a Poisson ideal. Hence the
result follows from the fact that A is Poisson isomorphic to B/xB.

(ii) By 3.2(iii), IB is a Poisson ideal of B since I is �-Poisson and there is
a Poisson isomorphism from B/IB onto �A/I�	x� �̄
p. Hence IB is a prime Poisson
ideal of B.

(iii) By 3.2(ii), P ∩ A is a prime Poisson ideal of A. Moreover, P ∩ A is �-
stable since x 
 P and ��a�x = �a� x� ∈ P for all a ∈ P ∩ A.

(iv) If n� is an inner Poisson derivation determined by an invertible element
a ∈ A then y = a−1xn − 1 is a Poisson central element of B and thus B is a finitely
generated A	y
-module since x is integral over A	y
.

(v) It follows immediately from 3.3. �

3.5. We recall Oh (1999, Theorem 2.4) and Brown and Goodearl (2002, Chapter
II.8): A Poisson k-algebra A is said to satisfy the Dixmier-Moeglin equivalence if
the following conditions are equivalent (for all prime Poisson ideals P of A):

(i) P is Poisson primitive (i.e., there exists a maximal ideal M of A such that P is
the largest Poisson ideal contained in M).

(ii) P is rational (i.e., the Poisson center of the quotient field of A/P is algebraic
over k).

(iii) P is locally closed (i.e., the intersection of all prime Poisson ideals properly
containing P is strictly larger than P).

Theorem. The Poisson algebra A2 = AP�Q
2�� given in 2.7 satisfies the Dixmier-Moeglin

equivalence.

Proof. Since A2 is finitely generated, we have the implications

locally closed ⇒ Poisson primitive ⇒ rational

by Oh (1999, 1.7 and 1.10), and thus it is enough to prove that every rational prime
Poisson ideal is locally closed.

Let pspecA2 be the set of all prime Poisson ideals of A2 and set

X = �P ∈ pspecA2 � y1 ∈ P�

Y = �P ∈ pspecA2 � x1 ∈ P�

Z = �P ∈ pspecA2 � y1 
 P� x1 
 P��

Since

A2/y1A2 � k	x1
	y2� �
p	x2� 
p = B

A2/x1A2 � k	y1
	y2� �
′
p	x2� 

′
p = C�
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where

� = �p2 − �12�x1
�

�x1
�  = �q1 − p2 + �12�x1

�

�x1
− q2y2

�

�y2

�′ = �12y1
�

�y1
� ′ = −�q1 + �12�y1

�

�y1
− q2y2

�

�y2
�

X and Y are homeomorphic to pspecB and pspecC. Set

z = �q2 − p2�y2x2 + �q1 − p1�y1x1 ∈ A2�

Then z is a Poisson normal element, and a prime Poisson ideal of A2 containing
either y2 or x2 contains either y1 or x1 since

�x2� y2� = q2y2x2 + �q1 − p1�y1x1�

Moreover, since

A2	y
−1
1 � x−1

1 � y−1
2 
 = k	y±1

1 
	x±1
1 � �
p	y

±1
2 � 
p	z� �
p = D�

where

� = −q1y1
�

�y1

 = �12y1
�

�y1
+ �p2 − �12�x1

�

�x1

� = −q1y1
�

�y1
+ q1x1

�

�x1
− q2y2

�

�y2
�

Z is homeomorphic to a subspace of pspecD.
Let a prime Poisson ideal P of A2 be rational and let X′ (respectively Y ′� Z′) be

the prime Poisson ideals of X (respectively, Y� Z) properly containing P. Then ∩X′

(respectively ∩Y ′, ∩Z′) contains an element a1 
 P (respectively a2 
 P� a3 
 P) since
B�C�D satisfy the Dixmier-Moeglin equivalence by Oh (1999, §2). It follows that the
intersection �∩X′� ∩ �∩Y ′� ∩ �∩Z′� of all prime Poisson ideals properly containing P
is strictly larger than P since

a1a2a3 ∈ �∩X′� ∩ �∩Y ′� ∩ �∩Z′�� a1a2a3 
 P�

It completes the proof. �

3.6. In 2.7, the coordinate ring A2 of Poisson symplectic 4-space is the Poisson
algebra k	y1� x1� y2� x2
 with Poisson bracket

�y1� y2� = y1y2 �x1� x2� = −x1x2

�y1� x2� = y1x2 �x1� y2� = −x1y2

�y1� x1� = 2y1x1 �y2� x2� = 2y2x2 + 2y1x1�
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Here we find the prime Poisson ideals of A2 that give a motivation for this article.
Note that y1 and x1 are Poisson normal elements of A2.

(i) The prime Poisson ideals containing x1: Observe that

A2/x1A2 � k	y1
	y2� �
p	x2� 
p� (3.1)

where � = y1
�
�y1

,  = y1
�
�y1

+ 2y2
�
�y2

. Set

A = k	y1
	y2� �
p� B = k	y1
	y2� �
p	x2� 
p = A	x2� 
p�

All prime Poisson ideals of A containing y2 are of the form I + y2A by 3.4(i),
where I is a prime ideal of k	y1
. Note that A = k	y2
	y1� �

′
p by 3.2(iv), where
�′ = −y2

�
�y2

, and that �′ is extended to A, still denoted by �′, by setting �′�y1� = 0.
Let P be a nonzero prime Poisson ideal of A not containing y2 and let f = f0 +
f1y2 + · · · + fry

r
2, fi ∈ k	y1
, be a nonzero element of P. Since �′�P�y2 = �P� y2� ⊆ P,

P is �′-stable and each fiy
r
2 is an eigenvector of �′ with eigenvalue −r, and thus each

fi ∈ P. It follows that P contains a nonzero element g = g0 + g1y1 + · · · + gny
n
1 ∈

k	y1
. Since P ∩ k	y1
 is �-stable, we have that y1 ∈ P by applying � on g. Therefore
all prime Poisson ideals of A are

0� I + y2A� J + y1A�

where I and J are prime ideals of k	y1
 and k	y2
, respectively.
Extend � and  to B in order that, for each f ∈ B, ��f�y2 = �f� y2� and

�f�x2 = �f� x2� respectively. Moreover there is a Poisson derivation � on B such
that ��f�y1 = �f� y1� for all f ∈ B by 1.1. Since every prime Poisson ideal of B not
containing y1� y2� x2 is ��� � ��-stable and each monomial yr1y

s
2x

t
2 ∈ B is a common

eigenvector of �, , � with eigenvalue r − 2t, r + 2s, −s − t, respectively, every
nonzero prime Poisson ideal of B contains one of y1, y2, x2. Therefore all prime
Poisson ideals of A2 containing x1 are

x1A2� x1A2 + x2A2

x1A2 + y2A2� y1A2 + x1A2

JA2 + y1A2 + x1A2 + x2A2� IA2 + x1A2 + y2A2 + x2A2

KA2 + y1A2 + x1A2 + y2A2� IA2 + x1A2 + y2A2 + x2A2

JA2 + y1A2 + x1A2 + x2A2� KA2 + y1A2 + x1A2 + y2A2

where I� J�K are prime ideals of k	y1
� k	y2
� k	x2
, respectively.

(ii) The prime Poisson ideals containing y1: Observe that

A2/y1A2 � k	x1
	y2� �
p	x2� 
p�

where � = −x1
�
�x1

,  = −x1
�
�x1

+ 2y2
�
�y2

. Replacing x1 in k	x1
	y2� �
p	x2� 
p by y1 in
the Poisson algebra given in the right hand of (3.1), all prime Poisson ideals of A2

Maram
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containing y1 are

y1A2� y1A2 + x2A2

y1A2 + y2A2� y1A2 + x1A2

JA2 + y1A2 + x1A2 + x2A2� LA2 + y1A2 + y2A2 + x2A2

KA2 + y1A2 + x1A2 + y2A2� LA2 + y1A2 + y2A2 + x2A2

JA2 + y1A2 + x1A2 + x2A2� KA2 + y1A2 + x1A2 + y2A2

where L� J�K are prime ideals of k	x1
� k	y2
� k	x2
, respectively.

(iii) The prime Poisson ideals containing neither y1 nor x1: If a prime Poisson
ideal P containing either y2 ∈ P or x2 ∈ P then y1 ∈ P or x1 ∈ P since �y2� x2� =
2y2x2 + 2y1x1. Hence we may assume that y2 
 P and x2 
 P.

Set z = y2x2 + y1x1. Then z is a Poisson normal element of A2 and

A2

[
y−1
1 � x−1

1 � y−1
2

] = k
[
y±1
1

][
x±1
1 � �

]
p

[
y±1
2 � 

]
p
	z� �
p�

where

� = 2y1
�

�y1

 = y1
�

�y1
− x1

�

�x1

� = 2y1
�

�y1
− 2x1

�

�x1
+ 2y2

�

�y2
�

Set A = k	y±1
1 
	x±1

1 � �
p	y
±1
2 � 
p� B = A	z� �
p. It is proven as in the third paragraph

of the case (i) that A has no nontrivial prime Poisson ideal. Suppose that there exists
a nontrivial Poisson ideal I of A and let P be a prime ideal minimal over I . Then
the largest �-stable ideal �P � �� contained in P is a prime Poisson ideal containing
I by Dixmier (1996, 3.3.2), where � is the set of all hamiltonians in A. Hence A is
Poisson simple, in particular, �-Poisson simple. Suppose that n� is inner for some
positive integer n. Then there exists an invertible element f ∈ A such that n��h� =
f−1�h� f� for all h ∈ A. Hence f = ayr1x

s
1y

t
2 for some a ∈ k× and integers r� s� t and

we get n = 0 by calculating n��y1�� n��x1�, and n��y2�, a contradiction. Hence n� is
not inner for each positive integer n. It follows that every nonzero prime Poisson
ideal of B contains z by 3.4(v), and thus the prime Poisson ideals of B are only zero
and zB.

Therefore, by (i), (ii), and (iii), all prime Poisson ideals of A2 are as follows:

0� zA2

x1A2� x1A2 + x2A2

x1A2 + y2A2� y1A2 + x1A2

JA2 + y1A2 + x1A2 + x2A2� IA2 + x1A2 + y2A2 + x2A2

KA2 + y1A2 + x1A2 + y2A2� IA2 + x1A2 + y2A2 + x2A2

JA2 + y1A2 + x1A2 + x2A2� KA2 + y1A2 + x1A2 + y2A2



POISSON POLYNOMIAL RINGS 1277

y1A2� y1A2 + x2A2

y1A2 + y2A2� y1A2 + x1A2

JA2 + y1A2 + x1A2 + x2A2� LA2 + y1A2 + y2A2 + x2A2

KA2 + y1A2 + x1A2 + y2A2� LA2 + y1A2 + y2A2 + x2A2

JA2 + y1A2 + x1A2 + x2A2� KA2 + y1A2 + x1A2 + y2A2�

where z = y2x2 + y1x1 and I� J�K� L are prime ideals of k	y1
, k	y2
� k	x2
, k	x1
,
respectively.
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