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A CONSTRUCTION OF AN ITERATED ORE EXTENSION

NO-HO MYUNG AND SEI-QWON OH

Abstract. Let B be a Poisson algebra C[x1, . . . , xk] with Poisson bracket such that

{xj , xi} = cjixixj + pji

for all j > i, where cji ∈ C and pji ∈ C[x1, . . . , xi]. Here we obtain an iterated skew polynomial
algebra such that its semiclassical limit is equal to B and the results are illustrated by examples.

1. Introduction

Recall the star product in [10, 1.1]. Let R = (R, {−,−}) be a Poisson algebra and let Q be
a quantization of R with a star product ∗. Then Q is a C[[~]]-algebra R[[~]] such that for any
a, b ∈ R ⊂ Q = R[[~]],

a ∗ b = ab+B1(a, b)~+B2(a, b)~
2 + . . .

subject to

(1.1) {a, b} = ~
−1(a ∗ b− b ∗ a)|~=0,

where Bi : R×R −→ R are bilinear products. In general, the star product is as follows: for any
f =

∑
n≥0 fn~

n, g =
∑

n≥0 gn~
n ∈ Q

(
∑

n≥0

fn~
n) ∗ (

∑

n≥0

gn~
n) =

∑

k,l≥0

fkgl~
k+l +

∑

k,l≥0,m≥1

Bm(fk, gl)~
k+l+m.

It is well-known that we can recover the Poisson algebra R = Q/~Q with Poisson bracket (1.1)
from Q since ~ is a nonzero, nonunit, non-zero-divisor and central element such that Q/~Q
is commutative. But it seems that the star product in Q is complicate and Q is difficult to
understand at an algebraic point of view since it is too big. For instance, if λ is a nonzero
element of C then ~− λ is a unit in Q and thus Q/(~ − λ)Q is trivial. Hence it seems that we
need an appropriate F-subalgebra A of Q such that A contains all generators of Q, ~ ∈ A and
A is understandable at an algebraic point of view, where F is a subring of C[[~]].

Suppose that A is an algebra and let ~ ∈ A be a nonzero, nonunit, non-zero-divisor and central
element such that A/~A is commutative. Then A/~A is a nontrivial commutative algebra as
well as a Poisson algebra with the Poisson bracket

(1.2) {a, b} = ~−1(ab− ba)

for a, b ∈ A/~A. Note that (1.1) is equal to (1.2). Further, if there is an element 0 6= λ ∈ C

such that ~ − λ is a nonunit in A then we obtain a nontrivial algebra A/(~ − λ)A with the
multiplication induced by that of A. The Poisson algebra A/~A is called a semiclassical limit of
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2 NO-HO MYUNG AND SEI-QWON OH

A and the nontrivial algebra A/(~ − λ)A is called a deformation of A or A/~A in [5, 2.1]. The
element ~ ∈ A inducing the Poisson algebra A/~A is called a regular element of A. Namely, by
a regular element ~ ∈ A we mean a nonzero, nonunit, non-zero-divisor and central element of
A such that A/~A is commutative. (An anonymous referee suggested to use the terminology
‘regular element’ while several papers for semiclassical limits were written even though there
are many concepts for ‘regular element’ as in [12] and [6]. We hope that a nice terminology for
this concept is given.) In general, let A be an F-algebra generated by x1, . . . , xn with relations
f1, . . . , fr and let λ ∈ C, where F is a subring of C[[~]] containing C[~] and fi are elements of the
free F-algebra on the set {x1, . . . , xn}. Assume that g|~=λ, fi|~=λ make sense mathematically
for all g ∈ A and i = 1, . . . , r. Denote by Aλ the C-algebra generated by x1, . . . , xn with
the relations f1|~=λ, . . . , fr|~=λ and let ϕ be the evaluation map from A onto Aλ defined by
g 7→ g|~=λ. Then ϕ is a C-algebra epimorphism and A/ kerϕ ∼= Aλ. In particular, if kerϕ 6= A
then Aλ is nontrivial and the multiplication of Aλ is induced by that of A. We still call the
nontrivial algebra Aλ a deformation of A/~A.

Let Bk be a Poisson C-algebra C[x1, . . . , xk] with Poisson bracket such that for all j > i,

(1.3) {xj , xi} = cjixixj + pji,

where cji ∈ C and pji ∈ C[x1, . . . , xi]. A main aim of the article is to give how to construct an
F-algebra which is presented by an iterated skew polynomial algebra such that its semiclassical
limit is equal to the given Poisson algebra Bk.

Let t be an indeterminate and let C[[t− 1]] be the ring of formal power series over C at t− 1.
Namely,

C[[t− 1]] =

{
∞∑

i=0

bi(t− 1)i | bi ∈ C

}
.

Note that C[[t − 1]] is an integral domain, that C[t] ⊆ C[[t − 1]] and that a nonzero element∑∞
i=0 bi(t − 1)i is a unit in C[[t − 1]] if and only if b0 6= 0. We assume throughout the article

that F is a subring of C[[t− 1]] containing C[t], namely

C[t] ⊆ F ⊆ C[[t− 1]].

Let

Ak−1 = F[x1][x2;β2, ν2] . . . [xk−1;βk−1, νk−1]

be an iterated skew polynomial F-algebra and let βk, νk be F-linear maps from Ak−1 into itself.
In this article, we find necessary and sufficient conditions for βk and νk such that there exists a
skew polynomial algebra Ak = Ak−1[xk;βk, νk] under suitable conditions. (See Lemma 2.2 and
Theorem 2.4.) Hence, using induction on k repeatedly, we can get iterated skew polynomial
algebras from the result. Next we observe that t − 1 is a regular element of Ak and find a
condition such that the Poisson algebra Bk = C[x1, . . . , xk] with Poisson bracket (1.3) is Poisson
isomorphic to the semiclassical limit Ak/(t − 1)Ak. (See Corollary 2.8 and [3, §2].) Finally we
give examples illustrating the results.

Recall several basic terminologies. (1) Given an F-endomorphism β on an F-algebra R, an F-
linear map ν is said to be a left β-derivation on R if ν(ab) = β(a)ν(b)+ν(a)b for all a, b ∈ R. For
such a pair (β, ν), we denote by R[z;β, ν] the skew polynomial F-algebra. Refer to [6, Chapter
2] for details of a skew polynomial algebra.

Maram



A CONSTRUCTION OF AN ITERATED ORE EXTENSION 3

(2) A commutative C-algebra R is said to be a Poisson algebra if there exists a bilinear
product {−,−} on R, called a Poisson bracket, such that (R, {−,−}) is a Lie algebra with
{ab, c} = a{b, c} + {a, c}b for all a, b, c ∈ R. A derivation α on R is said to be a Poisson
derivation if α({a, b}) = {α(a), b} + {a, α(b)} for all a, b ∈ R. Let α be a Poisson derivation on
R and let δ be a derivation on R such that

(1.4) δ({a, b}) − {δ(a), b} − {a, δ(b)} = α(a)δ(b) − δ(a)α(b)

for all a, b ∈ R. By [15, 1.1], the commutative polynomial C-algebra R[z] is a Poisson algebra
with Poisson bracket {z, a} = α(a)z + δ(a) for all a ∈ R. Such a Poisson polynomial algebra
R[z] is denoted by R[z;α, δ]p in order to distinguish it from skew polynomial algebras. If α = 0
then we write R[z; δ]p for R[z; 0, δ]p and if δ = 0 then we write R[z;α]p for R[z;α, 0]p.

2. A construction of an iterated skew polynomial algebra

Set A1 = F[x1] and let An, n > 1, be an iterated skew polynomial F-algebra

An = F[x1][x2;β2, ν2] . . . [xn;βn, νn].

By monomials in An we mean finite products of xi’s together with the unity 1. A monomial X
is said to be standard if X is of the form

X = 1 or X = xi1xi2 · · · xik (1 ≤ i1 ≤ i2 ≤ . . . ≤ ik ≤ n).

Note that the set of all standard monomials of An forms an F-basis.
Let β and ν be F-linear maps from an F-algebra R into itself. The following lemma is well

known, e.g. see [7, p.177].

Lemma 2.1. The following conditions are equivalent:
(1) The F-linear map φ : R → M2(R) by

φ(r) =

(
β(r) ν(r)
0 r

)

for all r ∈ R, is an F-algebra homomorphism
(2) β and ν are an endomorphism and a left β-derivation on R respectively.

In an iterated skew polynomial F-algebra

Ak−1 = F[x1][x2;β2, ν2] . . . [xk−1;βk−1, νk−1],

assume that βj , νj (j = 2, . . . , k − 1) satisfy

βj(xi) = ajixi, aji ∈ F (1 ≤ i < j < k)(2.1)

νj(xi) = uji ∈ Ai (1 ≤ i < j < k).(2.2)

We are going to construct a skew polynomial F-algebra

Ak = Ak−1[xk;βk, νk] = F[x1][x2;β2, ν2] . . . [xk;βk, νk]

such that βk, νk satisfy the following conditions

βk(1) = 1, βk(xi) = akixi, aki ∈ F (1 ≤ i ≤ k − 1),(2.3)

νk(1) = 0, νk(xi) = uki ∈ Ai (1 ≤ i ≤ k − 1).(2.4)

The following statement gives us necessary conditions for the existence of the skew polynomial
F-algebra Ak = Ak−1[xk;βk, νk] over Ak−1.
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Lemma 2.2. If there exists a skew polynomial F-algebra Ak = Ak−1[xk;βk, νk] such that βk, νk
are subject to (2.3), (2.4) then βk, νk satisfy the following conditions

βk(uji) = akjakiuji (1 ≤ i < j < k),(2.5)

akjxjuki + ukjxi = ajiukixj + akiajixiukj + νk(uji) (1 ≤ i < j < k).(2.6)

Proof. Let 1 ≤ i < j ≤ k − 1. Since βk is an F-algebra endomorphism, we have that

βk(xjxi) = βk(βj(xi)xj + νj(xi)) = akjakiajixixj + βk(uji)

and
βk(xjxi) = βk(xj)βk(xi) = akjakixjxi

= akjaki(βj(xi)xj + νj(xi)) = akjakiajixixj + akjakiuji

by (2.1)-(2.4). Hence we get (2.5).
Similarly, since νk is a left βk-derivation, we have that

νk(xjxi) = νk(xj)xi + βk(xj)νk(xi) = ukjxi + akjxjuki

and
νk(xjxi) = νk(βj(xi)xj + νj(xi)) = νk(ajixixj + uji)

= aji(νk(xi)xj + βk(xi)νk(xj)) + νk(uji)

= ajiukixj + akiajixiukj + νk(uji)

by (2.1)-(2.4). Hence we get (2.6). �

Lemma 2.3. For 1 ≤ i < j ≤ k − 1, let all βj , νj, aji, uji satisfy (2.1), (2.2). Let βk, νk be F-
linear maps from Ak−1 into itself subject to the conditions (2.3) and (2.4). If βk and νk satisfy
(2.5) and (2.6) then the following conditions hold.

(2.7) βk(xj)βk(xi) = βkβj(xi)βk(xj) + βkνj(xi),

(2.8) βk(xj)νk(xi) + νk(xj)xi = βkβj(xi)νk(xj) + νkβj(xi)xj + νkνj(xi)

Proof. Since Ak−1 is an iterated skew polynomial F-algebra, the equations (2.7) and (2.8) follow
from (2.5) and (2.6), respectively, by (2.1)-(2.4). �

In the following theorem, we see that (2.5) and (2.6) are sufficient conditions for the existence
of the skew polynomial F-algebra Ak = Ak−1[xk;βk, νk] over Ak−1.

Theorem 2.4. For 1 ≤ i < j ≤ k − 1, let all βj , νj , aji, uji satisfy (2.1), (2.2). Given F-linear
maps βk, νk from Ak−1 into itself subject to (2.3), (2.4), if βk and νk satisfy the conditions (2.5),
(2.6) then there exists an iterated skew polynomial F-algebra

Ak = Ak−1[xk;βk, νk] = F[x1][x2;β2, ν2] . . . [xk;βk, νk].

Proof. It is enough to show that there exist an F-algebra endomorphism βk on Ak−1 and a left
βk-derivation νk subject to the conditions (2.3) and (2.4). Note that the set of all standard
monomials forms an F-basis of Ak−1. For any standard monomials xi1 · · · xir ∈ Ak−1, define
F-linear maps βk and νk from Ak−1 into itself by

βk(1) = 1, βk(xi1 · · · xir) = (aki1xi1) · · · (akirxir),(2.9)

νk(1) = 0, νk(xi1 · · · xir) =
r∑

ℓ=1

(aki1xi1) · · · (akiℓ−1
xiℓ−1

)ukiℓ(xiℓ+1
· · · xir).(2.10)
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Observe that these F-linear maps βk and νk satisfy (2.3) and (2.4). We will show that the map
βk defined by (2.9) is an F-algebra endomorphism and the map νk defined by (2.10) is a left
βk-derivation by using Lemma 2.1.

Let F〈Sk−1〉 be the free F-algebra on the set Sk−1 = {x1, . . . , xk−1}. Define an F-algebra
homomorphism f : F〈Sk−1〉 → M2(Ak−1) by

f(xi) =

(
βk(xi) νk(xi)

0 xi

)
(1 ≤ i < k).

Let us show that

(2.11) f(νj(xi)) =

(
βkνj(xi) νkνj(xi)

0 νj(xi)

)

for 1 ≤ i < j < k. For any standard monomial X = xi1 · · · xir in Ak−1, by (2.9) and (2.10),

νk(X) =

r∑

ℓ=1

βk(xi1 · · · xiℓ−1
)νk(xiℓ)(xiℓ+1

· · · xir)

=
r−1∑

ℓ=1

βk(xi1 · · · xiℓ−1
)νk(xiℓ)(xiℓ+1

· · · xir) + βk(xi1 · · · xir−1
)νk(xir)

= νk(xi1 · · · xir−1
)xir + βk(xi1 · · · xir−1

)νk(xir).

In particular, if Xxj is standard (thus ir ≤ j) then

(2.12) νk(Xxj) = βk(X)νk(xj) + νk(X)xj .

Let us verify first that

(2.13) f(X) =

(
βk(X) νk(X)

0 X

)

for any standard monomial X = xi1 · · · xir in Ak−1 of length r. We proceed by induction on r.
If r = 1 then (2.13) is true trivially. Assume that r > 1 and that (2.13) holds for any standard
monomial of length < r. Set Y = xi1 · · · xir−1

. Then Y is a standard monomial of length r − 1
and X = Y xir . Thus (2.13) holds as follows:

f(X) = f(Y xir) = f(Y )f(xir)

=

(
βk(Y ) νk(Y )

0 Y

)(
βk(xir) νk(xir)

0 xir

)
(by induction hypothesis)

=

(
βk(Y )βk(xir ) βk(Y )νk(xir) + νk(Y )xir

0 Y xir

)

=

(
βk(X) νk(X)

0 X

)
. (by (2.9), (2.12))
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Let νj(xi) =
∑

ℓ bℓXℓ, where all bℓ ∈ F and Xℓ are standard monomials of Ai. Since f is an
F-algebra homomorphism, we have

f(νj(xi)) =
∑

ℓ

bℓf(Xℓ)

=
∑

ℓ

bℓ

(
βk(Xℓ) νk(Xℓ)

0 Xℓ

)
(by (2.13))

=

(
βk(

∑
ℓ bℓXℓ) νk(

∑
ℓ bℓXℓ)

0
∑

ℓ bℓXℓ

)

=

(
βkνj(xi) νkνj(xi)

0 νj(xi)

)
.

Thus (2.11) holds.
Note that Ak−1 is an F-algebra generated by x1, . . . , xk−1 with relations

xjxi − βj(xi)xj − νj(xi) (1 ≤ i < j < k).

Namely, Ak−1 is isomorphic to the F-algebra F〈Sk−1〉/I, where I is the ideal generated by

xjxi − βj(xi)xj − νj(xi) (1 ≤ i < j < k).

Since f is an F-algebra homomorphism, it is easy to check that I ⊆ kerf by (2.7), (2.8) and
(2.11). Hence there exists an F-algebra homomorphism φ : Ak−1 → M2(Ak−1) such that

φ(xi) =

(
βk(xi) νk(xi)

0 xi

)

for 1 ≤ i < k. By Lemma 2.1, βk is an F-algebra endomorphism on Ak−1 and νk is a left
βk-derivation on Ak−1 as claimed. �

Remark 2.5. Retain the notations of Theorem 2.4.
(1) If aki 6= 0 for all 1 ≤ i < k then βk is a monomorphism.
(2) If uji = 0 for all 1 ≤ i < j ≤ k then (2.5) and (2.6) hold trivially.
(3) If Ak−1 is commutative and aki = 1 for all 1 ≤ i ≤ k − 1 then (2.5) and (2.6) hold.

Proof. (1) Note that βi, νi are F-linear for all i = 1, . . . , k. Let f =
∑

i aiXi ∈ Ak−1, where
ai ∈ F andXi are standard monomials for all i, and suppose that βk(f) = 0. Then βk(Xi) = biXi

for some 0 6= bi ∈ F by (2.9) and thus

0 = βk(f) =
∑

i

aibiXi.

It follows that all ai = 0 since the standard monomials of Ak form an F-basis. Thus f = 0.
(2) Trivial.
(3) Since Ak−1 is commutative, uji = 0 and aji = 1 for all 1 ≤ i < j ≤ k − 1 and thus (2.5)

and (2.6) hold. �

Theorem 2.6. Let Ak = F[x1][x2;β2, ν2] . . . [xk;βk, νk] be the iterated skew polynomial F-algebra
in Theorem 2.4. Suppose that F/(t − 1)F is isomorphic to C, that t − 1 is a nonunit and non-
zero-divisor in Ak and that

(2.14) aji − 1 ∈ (t− 1)F, νj(xi) ∈ (t− 1)Ak



A CONSTRUCTION OF AN ITERATED ORE EXTENSION 7

for all 1 ≤ i < j ≤ k. Then t − 1 is a regular element of Ak and the semiclassical limit
Ak = Ak/(t− 1)Ak is Poisson isomorphic to an iterated Poisson polynomial C-algebra

C[x1][x2;α2, δ2]p . . . [xk;αk, δk]p,

where

(2.15) αj(xi) =

(
daji
dt

|t=1

)
xi, δj(xi) =

dνj(xi)

dt
|t=1

for all 1 ≤ i < j ≤ k. (Derivatives are formal derivatives of power series in t− 1.)

Proof. Note that Ak is generated by x1, . . . , xk and that t−1 ∈ F ⊂ Ak. Hence t−1 is a nonzero
central element of Ak. Since

(2.16) xjxi − xixj = βj(xi)xj + νj(xi)− xixj = (aji − 1)xixj + νj(xi) ∈ (t− 1)Ak

by (2.14), Ak is a commutative C-algebra and thus t− 1 is a regular element of Ak. Moreover
we have

{xj , xi} = (t− 1)−1(xjxi − xixj)

=

(
aji − 1

t− 1

)
xixj +

(
νj(xi)

t− 1

)
(by (2.16))

=

(
daji
dt

|t=1

)
xixj +

(
dνj(xi)

dt
|t=1

)
(by (2.14))

for all 1 ≤ i < j ≤ k. Hence the result follows. �

For each positive integer k, we will writeBk for the commutative polynomial ringC[x1, . . . , xk].

Lemma 2.7. Let Bk = C[x1, . . . , xk] be a Poisson algebra satisfying the following condition: for
any 1 ≤ i < j ≤ k,

(2.17) {xj , xi} = cjixixj + pji

for some cji ∈ C, pji ∈ Bi. Then Bk is an iterated Poisson polynomial algebra of the form

(2.18) Bk = C[x1][x2;α2, δ2]p . . . [xk;αk, δk]p,

where

αj(xi) = cjixi, δj(xi) = pji.

Conversely, if Bk is an iterated Poisson polynomial algebra of the form (2.18) then Bk is a
Poisson algebra satisfying the condition (2.17).

Proof. Suppose that Bk is a Poisson algebra satisfying the condition (2.17). Define derivations
αk, δk on Bk−1 by

αk =

k−1∑

i=1

cki
∂

∂xi
, δk =

k−1∑

i=1

pki
∂

∂xi
.

Then αk is a Poisson derivation, δk is a derivation and the pair (αk, δk) satisfies (1.4) by [15,
1.1] since Bk is a Poisson algebra. Thus Bk is a Poisson polynomial algebra

Bk = C[x1, . . . , xk−1][xk;αk, δk]p

over the Poisson subalgebra Bk−1 = C[x1, . . . , xk−1]. The result follows by induction on k.
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Conversely, if Bk is an iterated Poisson polynomial algebra of the form (2.18) then Bk is
clearly a Poisson algebra satisfying the condition (2.17). �

Corollary 2.8. Let Bk be an iterated Poisson polynomial C-algebra

Bk = C[x1][x2;α2, δ2]p . . . [xk;αk, δk]p

such that
αj(xi) = cjixi (cji ∈ C), δj(xi) ∈ C[x1, . . . , xi]

for all 1 ≤ i < j ≤ k and let
aji ∈ F, uji ∈ F[x1, . . . , xi]

such that

(2.19)
aji − 1 ∈ (t− 1)F,

daji
dt

|t=1 = cji,

uji ∈ (t− 1)F[x1, . . . , xi],
duji
dt

|t=1 = [δj(xi)],

where [δj(xi)] is the C-linear combination of δj(xi) by standard monomials of x1, . . . , xi. Set
A1 = F[x1]. Suppose that F/(t − 1)F is isomorphic to C and that t − 1 is a nonunit and
non-zero-divisor of an iterated skew polynomial F-algebra

Ak−1 = F[x1][x2;β2, ν2] . . . [xk−1;βk−1, νk−1]

such that all βj , νj satisfy (2.1) and (2.2). If F-linear maps βk, νk on Ak−1 subject to (2.3) and
(2.4) satisfy (2.5) and (2.6) then there exists an iterated skew polynomial F-algebra

Ak = Ak−1[xk;βk, νk] = F[x1][x2;β2, ν2] . . . [xk−1;βk−1, νk−1][xk;βk, νk]

and t − 1 is a regular element of Ak such that Bk is Poisson isomorphic to the semiclassical
limit Ak/(t− 1)Ak.

Proof. By Theorem 2.4, there exists a skew polynomial F-algebra Ak = Ak−1[xk;βk, νk]. Since
t−1 is still a nonunit and non-zero-divisor in Ak, it is a regular element of Ak and the semiclassical
limit Ak/(t− 1)Ak is Poisson isomorphic to Bk by Theorem 2.6. �

3. Examples

In this section, we give examples which illustrate that Ak is an iterated skew polynomial
F-algebra such that Ak/(t − 1)Ak is Poisson isomorphic to a given Poisson algebra Bk. The
first four examples appearing in [11] are Poisson Hopf algebras presented by iterated Poisson
polynomial algebras. We are interested only in their Poisson structures because we have not
found a formal way to give Hopf structures in their deformations yet.

Example 3.1. In [11, Example 3.2], B = C[x1, x2, x3] is a Poisson algebra with the Poisson
bracket

{x2, x1} = 0, {x3, x1} = λ11x1, {x3, x2} = λ21x1 + λ22x2,

where λℓm ∈ C. Observe that B is a Poisson polynomial C-algebra

B = C[x1, x2][x3; δ3]p,

where
δ3(x1) = λ11x1, δ3(x2) = λ21x1 + λ22x2.



A CONSTRUCTION OF AN ITERATED ORE EXTENSION 9

Set F = C[t] and

(3.1) a31 = a32 = 1, u31 = f11λ11x1 ∈ F[x1], u32 = f21λ21x1 + f22λ22x2 ∈ F[x1, x2],

where fℓm ∈ (t − 1)F with dfℓm
dt

|t=1 = 1, for example, fℓm = (t − 1)tNℓm for some nonnegative
integer Nℓm. By Remark 2.5(3), the F-linear maps β3 and ν3 on F[x1, x2] defined by

β3(xi) = xi, ν3(xi) = u3i (i = 1, 2)

satisfy (2.5) and (2.6). Hence, by Theorem 2.4, there exists a skew polynomial F-algebra

A = F[x1, x2][x3; ν3].

Moreover t− 1 is a regular element of A and thus B is Poisson isomorphic to the semiclassical
limit A/(t− 1)A of A by Corollary 2.8 since all aji, uji satisfy (2.19).

Example 3.2. In [11, Example 3.3], B = C[x1, x2, x3, x4] is a Poisson algebra with the Poisson
bracket

{x2, x1} = {x3, x1} = {x3, x2} = 0,

{x4, x1} = λ11x1,

{x4, x2} = λ21x1 + λ22x2,

{x4, x3} = λ31x1 + λ32x2 + (λ11 + λ22)x3,

where λℓm ∈ C. Observe that B is a Poisson polynomial C-algebra

B = C[x1, x2, x3][x4; δ4]p,

where

δ4(x1) = λ11x1, δ4(x2) = λ21x1 + λ22x2, δ4(x3) = λ31x1 + λ32x2 + (λ11 + λ22)x3.

Set F = C[t] and

(3.2)

a41 = a42 = a43 = 1,

u41 = f11λ11x1 ∈ F[x1],

u42 = f21λ21x1 + f22λ22x2 ∈ F[x1, x2],

u43 = f31λ31x1 + f32λ32x2 + (f11λ11 + f22λ22)x3 ∈ F[x1, x2, x3],

where fℓm ∈ (t − 1)F with dfℓm
dt

|t=1 = 1. By Remark 2.5(3), the F-linear maps β4 and ν4 on
F[x1, x2, x3] subject to

β4(xi) = xi, ν4(xi) = u4i (i = 1, 2, 3)

satisfy (2.5) and (2.6). Hence, by Theorem 2.4, there exists a skew polynomial F-algebra

A = F[x1, x2, x3][x4; ν4].

Moreover t− 1 is a regular element of A and thus B is Poisson isomorphic to the semiclassical
limit A/(t− 1)A of A by Corollary 2.8 since all aji, uji satisfy (2.19).

Example 3.3. In [11, Example 3.4], C = C[g±1, x] is a Poisson algebra with the Poisson bracket

{x, g} = λgx,

where λ ∈ Z. Let D = C[g, h, x]. Replacing g−1 in C by h in D, D is a Poisson algebra with
the Poisson bracket

{g, h} = 0, {x, g} = λgx, {x, h} = −λhx,
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namely D = C[g, h][x;α]p is a Poisson algebra by [15, 1.1], where α = λg ∂
∂g

− λh ∂
∂h

in C[g, h].

Note that the ideal (gh − 1)D is a Poisson ideal such that D/(gh − 1)D is Poisson isomorphic
to C.

Set F = C[t, t−1] and a = tλ. By Remark 2.5(2) and Theorem 2.4, there exists a skew
polynomial F-algebra A = F[g, h][x;β] such that gh− 1 is a central element in A, where

β(g) = ag, β(h) = a−1h.

Set B = A/(gh − 1)A and note that t − 1 is a regular element of A and B. The semiclassical
limit A/(t− 1)A is Poisson isomorphic to D by Corollary 2.8 since

a− 1 ∈ (t− 1)F,
da

dt
|t=1 = λ, a−1 − 1 ∈ (t− 1)F,

da−1

dt
|t=1 = −λ

and the semiclassical limit B/(t− 1)B is Poisson isomorphic to C.

Example 3.4. In [11, Example 3.7], C = C[E,F,K±1] is a Poisson algebra with the Poisson
bracket

{E,K} = −2KE,

{F,K} = 2KF,

{F,E} =
1

2
(K−1 −K).

Set D = C[E,F,H,K]. Replacing K−1 in C by H in D, it is observed that D is a Poisson
algebra with Poisson bracket

{H,K} = 0, {E,H} = 2HE,

{E,K} = −2KE, {F,H} = −2HF,

{F,K} = 2KF, {F,E} =
1

2
(H −K)

and that the ideal (HK − 1)D is a Poisson ideal such that D/(HK − 1)D is Poisson isomorphic
to C. In fact, D is an iterated Poisson polynomial C-algebra

D = C[H,K][E;α3]p[F ;α4, δ4]p,

where
α3(H) = 2H, α3(K) = −2K,

α4(H) = −2H, α4(K) = 2K, α4(E) = 0,

δ4(H) = 0, δ4(K) = 0, δ4(E) =
1

2
(H −K).

Set F = C[t, t−1] and s =
∑

i≥0(1 − t)i ∈ C[[t− 1]]. Since ts = s− (1 − t)s = 1 in C[[t− 1]],

we have that t−1 = s and thus C[t] ⊂ F ⊂ C[[t− 1]]. Set

(3.3)
a31 = t2, a32 = t−2, a41 = t−2, a42 = t2, a43 = 1,

u31 = 0, u32 = 0, u41 = 0, u42 = 0, u43 =
1

4
(t− t−1)(H −K).

Then there exists a skew polynomial F-algebra F[H,K][E;β3] by Remark 2.5(2) and, applying
Theorem 2.4, there exists an iterated skew polynomial F-algebra

A = F[H,K][E;β3][F ;β4, ν4],
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where
β3(H) = t2H, β3(K) = t−2K,

β4(H) = t−2H, β4(K) = t2K, β4(E) = E,

ν4(H) = 0, ν4(K) = 0, ν4(E) =
1

4
(t− t−1)(H −K).

Moreover the element HK − 1 is a central element of A and t− 1 is a regular element of A and
B = A/(HK − 1)A. Note that the semiclassical limit A/(t− 1)A is Poisson isomorphic to D by
Corollary 2.8 since all aji, uji satisfy (2.19). Observe that the semiclassical limit B/(t− 1)B is
Poisson isomorphic to C.

Let 0,±1 6= q ∈ C. Then t − q is a nonzero and nonunit in A and B. The deformation
Bq = B/(t− q)B is a nontrivial C-algebra with the multiplication induced by that of B, which
is isomorphic to Uq(sl2(C)) in [1, I.3.1] as shown in [8, 4.5].

Proposition 3.5. Fix h ∈ B3 = C[x1, x2, x3] with degree ≤ 3. By [9, Proposition 1.17], B3

becomes a Poisson algebra with Poisson bracket

(3.4) {f, g} = det




∂h
∂x1

∂h
∂x2

∂h
∂x3

∂f
∂x1

∂f
∂x2

∂f
∂x3

∂g
∂x1

∂g
∂x2

∂g
∂x3




for f, g ∈ B3. Suppose that the Poisson bracket of B3 satisfies the condition (2.17). Then h is
of the form

h = λx1x2x3 + µx3 + f1x2 + f2,

where λ, µ ∈ C and f1, f2 ∈ C[x1] such that deg f1 ≤ 2 and deg f2 ≤ 3.

Proof. Note that the Poisson bracket of B3 is as follows:

{x1, x2} =
∂h

∂x3
(3.5)

{x1, x3} = −
∂h

∂x2
(3.6)

{x2, x3} =
∂h

∂x1
.(3.7)

By (3.5) and (2.17), we have that ∂h
∂x3

= {x1, x2} = −c21x1x2 − p21 and thus

(3.8) h = −(c21x1x2 + p21)x3 + f,

where c21 ∈ C, p21 ∈ C[x1] with degree ≤ 2 and f ∈ C[x1, x2] with degree ≤ 3. By (3.6), (3.8)
and (2.17), we have

c31x1x3 + p31 = {x3, x1} = −c21x1x3 +
∂f

∂x2

and thus ∂f
∂x2

= p31 ∈ C[x1]. It follows that f = p31x2 + f2 and thus

(3.9) h = −(c21x1x2 + p21)x3 + p31x2 + f2

by (3.8), where f2 ∈ C[x1] such that deg p31 ≤ 2 and deg f2 ≤ 3. By (3.7) and (3.9), we have
that

−c32x2x3 − p32 = {x2, x3} = −c21x2x3 − p′21x3 + p′31x2 + f ′
2,
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where p′21 =
∂p21
∂x1

, p′31 =
∂p31
∂x1

, f ′
2 =

∂f2
∂x1

, and thus p21 ∈ C. Hence h is of the form

h = λx1x2x3 + µx3 + f1x2 + f2

for some λ, µ ∈ C and f1, f2 ∈ C[x1] with degf1 ≤ 2 and degf2 ≤ 3, as claimed. �

Example 3.6. Retain the notations of Proposition 3.5. Suppose that degf1 = 0, namely f1 ∈ C.
By (3.4), B3 is a Poisson algebra with the Poisson bracket

{x2, x1} = −λx1x2 − µ, {x3, x1} = λx1x3 + f1, {x3, x2} = −λx2x3 −
∂f2
∂x1

.

Hence B3 is an iterated Poisson polynomial C-algebra

B3 = C[x1][x2;α2, δ2]p[x3;α3, δ3]p

by [15, 1.1], where

α2(x1) = −λx1, α3(x1) = λx1, α3(x2) = −λx2,

δ2(x1) = −µ, δ3(x1) = f1, δ3(x2) = −
∂f2
∂x1

.

Let F = C[[t− 1]] and let U(F) be the unit group of F. Note that t− 1 is a nonzero, nonunit

and non-zero-divisor of F. Fix λ̃ ∈ U(F), µ̃, f̃1 ∈ F, g̃ ∈ F[x1] such that

(3.10)

λ̃− 1 ∈ (t− 1)F, µ̃, f̃1 ∈ (t− 1)F, g̃ ∈ (t− 1)F[x1],

dλ̃

dt
|t=1 = λ,

dµ̃

dt
|t=1 = µ,

df̃1
dt

|t=1 = f1,
dg̃

dt
|t=1 =

∂f2
∂x1

.

(Such ones exist. For example, λ̃ = eλ(t−1), µ̃ = (t− 1)µ, f̃1 = (t− 1)f1, g̃ = (t− 1) ∂f2
∂x1

.) Set

(3.11) a21 = λ̃−1, u21 = −µ̃.

The F-linear maps β2 and ν2 on F[x1] defined by

β2(x1) = a21x1 = λ̃−1x1, ν2(x1) = u21 = −µ̃

satisfy (2.5) and (2.6) trivially. Hence there exists a skew polynomial F-algebra A2 = F[x1][x2;β2, ν2]
by Theorem 2.4.

Set

(3.12)
a31 = λ̃, a32 = λ̃−1,

u31 = f̃1, u32 = −g̃.

Since u21, u31 ∈ F, u32 ∈ F[x1] and a−1
31 = a21 = a32, the F-linear maps β3 and ν3 on A2 subject

to
β3(x1) = a31x1 = λ̃x1, β3(x2) = a32x2 = λ̃−1x2,

ν3(x1) = u31 = f̃1, ν3(x2) = u32 = −g̃

satisfy (2.5) and (2.6). Hence, by Theorem 2.4, there exists a skew polynomial F-algebra

A3 = A2[x3;β3, ν3] = F[x1][x2;β2, ν2][x3;β3, ν3].

Note that t− 1 is a regular element in A3. Thus the semiclassical limit A3/(t− 1)A3 is Poisson
isomorphic to B3 by Corollary 2.8 since all aji, uji satisfy (2.19) by (3.10).
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For every 1 6= q ∈ C, t − q is a unit in F = C[[t − 1]] and thus A3/(t − q)A3 is trivial.
Hence, in order to find nontrivial deformations, we need a suitable subalgebra A′

3 of A3 such
that deformations A′

3/(t− q)A′
3 are nontrivial, as one sees below.

As a special case, let F = C[t, t−1] and λ = −2, µ = 2, f1 = 2, f2 = 2x1. Then

h = −2x1x2x3 + 2x3 + 2x2 + 2x1

and B3 is a Poisson C-algebra with the Poisson bracket

{x2, x1} = 2x1x2 − 2, {x3, x1} = −2x1x3 + 2, {x3, x2} = 2x2x3 − 2.

Setting

λ̃ = t−2, µ̃ = t2 − 1, f̃1 = −(t−2 − 1), g̃ = t2 − 1,

there is an F-algebra A3 = F[x1][x2;β2, ν2][x3;β3, ν3] such that

β2(x1) = a21x1 = t2x1, β3(x1) = a31x1 = t−2x1, β3(x2) = a32x2 = t2x2,

ν2(x1) = u21 = −(t2 − 1), ν3(x1) = u31 = −(t−2 − 1), ν3(x2) = u32 = −(t2 − 1).

Note that A3 is the F-algebra generated by x1, x2, x3 subject to the relations

(3.13) t2x1x2 − x2x1 = t2 − 1, t2x3x1 − x1x3 = t2 − 1, t2x2x3 − x3x2 = t2 − 1.

Let 0, 1 6= q ∈ C and let Aq
3 be the deformation Aq

3 = A3/(t − q)A3 of B3. Then Aq
3 is the

C-algebra generated by x1, x2, x3 subject to the relations obtained from (3.13) by replacing t
by q. Observe that the set {xi3|i = 0, 1, . . .} is an Ore set of Aq

3 by the second and the third

equations of (3.13). The localization Aq
3[x

−1
3 ] of Aq

3 at {xi3|i = 0, 1, . . .} is isomorphic to Uq(sl2)
by Ito, Terwilliger and Weng [16], which is Yq in [8, 4.5].

Example 3.7. As in [5, 2.2], we find a quantization and deformations of a well-known Poisson
algebra Bk = C[x1, x2, . . . , x2k−1, x2k] with Poisson bracket

{f, g} =

k∑

i=1

(
−

∂f

∂x2i−1

∂g

∂x2i
+

∂g

∂x2i−1

∂f

∂x2i

)
,

which is called Poisson Weyl algebra in [2, 1.1.A] and [14, 1.3]. Since Bk is a Poisson algebra
with Poisson bracket

{xj , xi} =

{
1, if j = 2ℓ, i = 2ℓ− 1,

0, otherwise

for j > i, Bk is an iterated Poisson polynomial algebra

Bk = C[x1][x2; δ2]p . . . [x2k−1]p[x2k; δ2k]p,

where

δ2ℓ(xi) =

{
1, if i = 2ℓ− 1,

0, if i 6= 2ℓ− 1.

Set F = C[t] and let

(3.14) aji = 1, uji =

{
t− 1, if j = 2ℓ, i = 2ℓ− 1,

0, otherwise

for all 1 ≤ i < j ≤ 2k. By Theorem 2.4, there exists an iterated skew polynomial F-algebra

Ak = F[x1][x2; ν2] . . . [x2k−1][x2k; ν2k],



14 NO-HO MYUNG AND SEI-QWON OH

where

ν2ℓ(xi) =

{
t− 1, if i = 2ℓ− 1,

0, if i 6= 2ℓ− 1.

Thus Ak is an F-algebra generated by x1, x2, . . . , x2k−1, x2k subject to the relations

(3.15) xjxi − xixj =

{
t− 1 if j = 2ℓ, i = 2ℓ− 1

0 otherwise,

which is the algebra appearing in [13, Proposition 3.2]. For each 0 6= λ ∈ C, a deformation
Aλ = Ak/(t−1−λ)Ak is a C-algebra generated by x1, x2, . . . , x2k−1, x2k subject to the relations

xjxi − xixj =

{
λ, if j = 2ℓ, i = 2ℓ− 1,

0, otherwise.

Hence we get a family of infinite nontrivial deformations {Aλ|0 6= λ ∈ C}, all of which are
isomorphic to the k-th Weyl algebra by [13, Proposition 3.4].

Note that t−1 is a regular element of Ak. By Corollary 2.8, the semiclassical limit Ak/(t−1)Ak

is Poisson isomorphic to Bk since

aji − 1 ∈ (t− 1)F,
daji
dt

|t=1 = 0, uji ∈ (t− 1)Ai,
duji
dt

|t=1 = [δj(xi)].

Example 3.8. Let Bk be the Poisson Weyl algebra given in Example 3.7. Set F = C[[t − 1]]
and

(3.16) aji =

{
cos(t− 1), if i+ j is odd,

sec(t− 1), if i+ j is even,
uji =

{
sin(t− 1), if j = 2ℓ, i = 2ℓ− 1,

0, otherwise

for all 1 ≤ i < j ≤ 2k. Note that aji, uji ∈ F by elementary calculus.
We will show by induction on k that there exists an iterated skew polynomial F-algebra

Ak = F[x1][x2;β2, ν2] . . . [x2k−1;β2k−1][x2k;β2k, ν2k],

where

βj(xi) = ajixi, νj(xi) = uji

for all 1 ≤ i < j ≤ 2k. If k = 1 then there exists the skew polynomial F-algebra A1 =
F[x1][x2;β2, ν2] trivially by Theorem 2.4. Suppose that k > 1 and assume that there exists an
iterated skew polynomial F-algebra Ak−1. Note that, for any positive integers i, j, ℓ,

(3.17)
i+ j is odd if and only if

(ℓ+ j is odd and ℓ+ i is even) or (ℓ+ j is even and ℓ+ i is odd).

Observe that F-linear maps β2k−1 and ν2k−1 satisfy (2.6) trivially since ν2k−1(uji) = 0 and
u2k−1,i = 0 for all 1 ≤ i < 2k−1 and that they also satisfy (2.5) by (3.17) since β2k−1(uji) = uji.
Hence there exists a skew polynomial F-algebra Ak−1[x2k−1;β2k−1] by Theorem 2.4. For F-linear
maps β2k and ν2k, they satisfy (2.5) and (2.6) by (3.17) since β2k(uji) = uji and ν2k(uji) = 0
and thus there exists Ak = Ak−1[x2k−1;β2k−1][x2k;β2k, ν2k] by Theorem 2.4.

Note that t−1 is a regular element of Ak. By Corollary 2.8, the semiclassical limit Ak/(t−1)Ak

is Poisson isomorphic to Bk since

aji − 1 ∈ (t− 1)F,
daji
dt

|t=1 = 0, uji ∈ (t− 1)Ai,
duji
dt

|t=1 = [δj(xi)]
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by elementary calculus.
Note that Ak is an F-algebra generated by x1, x2, . . . , x2k−1, x2k subject to the relations

(3.18)

x2ℓx2ℓ−1 − cos(t− 1)x2ℓ−1x2ℓ = sin(t− 1), (ℓ = 1, . . . , k),

xjxi − sec(t− 1)xixj = 0, (i < j, i+ j is even),

xjxi − cos(t− 1)xixj = 0,

(
i < j, i+ j is odd,

if j = 2ℓ then i 6= 2ℓ− 1

)
.

For any 0 6= q ∈ C, t− 1− q is a unit in Ak and thus Ak/(t− 1− q)Ak is trivial. It follows that
we need an appropriate subalgebra of Ak to find a nontrivial deformation. For instance, let A′

k

be the C[t]-subalgebra of Ak generated by x1, x2, . . . , x2k−1, x2k. Evaluating A′
k to π at t − 1,

we have a deformation Aπ
k which is the C-algebra generated by x1, x2, . . . , x2k−1, x2k subject to

the relations

xjxi + xixj = 0 (j > i)

by (3.18). In this case the evaluation map ϕ from A′
k onto Aπ

k defined by f 7→ f |t−1=π is a
C-algebra epimorphism and thus A′

k/ kerϕ
∼= Aπ

k .

Example 3.9. The commutative C-algebra B = C[x1, . . . , xn] is a Poisson C-algebra with
Poisson bracket

{xj , xi} = xixj

for all 1 ≤ i < j ≤ n by [4, Example 4.5]. Note that B is an iterated Poisson polynomial
C-algebra

B = C[x1][x2;α2]p . . . [xn;αn]p,

where αj(xi) = xi for all 1 ≤ i < j ≤ n.
Set F = C[t] and aki = t for 1 ≤ i < k ≤ n. Then, by Remark 2.5(2) and Theorem 2.4, there

exists an iterated skew polynomial F-algebra

A = F[x1][x2;β2] . . . [xn;βn],

where βk(xi) = akixi for all 1 ≤ i < k ≤ n. Note that t − 1 is a regular element of A. By
Corollary 2.8, A/(t− 1)A is Poisson isomorphic to B since

aki − 1 ∈ (t− 1)F,
daki
dt

|t=1 = 1.

Let 0, 1 6= q ∈ C. The deformation Aq = A/(t − q)A of B is the C-algebra generated by
x1, . . . , xn subject to the relations

xjxi = qxixj

for all 1 ≤ i < j ≤ n, which is the coordinate ring Oq(C
n) of quantum affine n-space in [1, I.2.1].

Example 3.10. A Poisson 2 × 2-matrices algebra is the coordinate ring of 2 × 2-matrices,
O(M2(C)) = C[x, y, z, w], with Poisson bracket

{x, y} = xy, {x, z} = xz, {x,w} = 2yz,

{y, z} = 0, {y,w} = yw, {z, w} = zw

by [4, Example 4.9]. Note that O(M2(C)) is an iterated Poisson polynomial C-algebra

O(M2(C)) = C[y][z][x;α3]p[w;α4, δ4]p,
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where
α3(y) = y, α3(z) = z,

α4(y) = −y, α4(z) = −z, α4(x) = 0,

δ4(y) = 0, δ4(z) = 0, δ4(x) = −2yz.

Set F = C[t, t−1] and

(3.19)

a31 = t, a32 = t,

u31 = 0, u32 = 0,

a41 = a−1
31 , a42 = a−1

32 , a43 = 1,

u41 = 0, u42 = 0, u43 = −(t− t−1)yz.

We show that there exists an iterated skew polynomial F-algebra

A = F[y, z][x;β3][w;β4, ν4],

where

(3.20)

β3(y) = a31y, β3(z) = a32z,

β4(y) = a−1
31 y, β4(z) = a−1

32 z, β4(x) = a43x,

ν4(y) = 0, ν4(z) = 0, ν4(x) = u43.

By Remark 2.5(2) and Theorem 2.4, there exists a skew polynomial F-algebra F[y, z][x;β3]. Note
that F[y, z] is commutative and u43 ∈ F[y, z], a42a32 = a41a31 = 1. Hence F-linear maps β4 and
ν4 satisfy (2.5) and (2.6) and thus there exists an iterated skew polynomial F-algebra A by
Theorem 2.4. Note that t−1 is a regular element of A. Hence the semiclassical limit A/(t−1)A
is Poisson isomorphic to O(M2(C)) by Corollary 2.8 since all aji, uji satisfy (2.19).

The deformation
Aq = A/(t− q)A, (0, 1 6= q ∈ C)

with multiplication induced by that of A is the C-algebra generated by x, y, z, w subject to the
relations

zy = yz, xy = qyx, xz = qzx,

yw = qwy, zw = qwz, xw − wx = (q − q−1)yz.

Following [1, I.1.7], Aq is the quantum 2× 2-matrices algebra Oq(M2(C)) as expected.

Acknowledgments The authors would like to appreciate a referee for indicating valuable com-
ments and mistakes. The second author is supported by National Research Foundation of Korea,
NRF-2017R1A2B4008388.

References

1. K. A. Brown and K. R. Goodearl, Lectures on algebraic quantum groups, Advanced courses in mathematics-
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