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Abstract
A new large class of Poisson algebras, the class of generalized Weyl Poisson algebras,
is introduced. It can be seen as Poisson algebra analogue of generalizedWeyl algebras
or as giving a Poisson structure to (certain) generalized Weyl algebras. A Poisson
simplicity criterion is given for generalized Weyl Poisson algebras, and an explicit
description of the Poisson centre is obtained. Many examples are considered (e.g. the
classical polynomial Poisson algebra in 2n variables is a generalized Weyl Poisson
algebra).
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1 Introduction

In this paper, K is a field, algebra means a K -algebra (if it is not stated otherwise) and
K ∗ = K\{0}.

Generalized Weyl algebras, [1–3]. Let D be a ring, σ = (σ1, ..., σn) be an n-tuple
of commuting automorphisms of D, a = (a1, ..., an) be an n-tuple of elements of
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106 V. V. Bavula

the centre Z(D) of D such that σi (a j ) = a j for all i "= j . The generalized Weyl
algebra A = D[X , Y ; σ, a] (briefly GWA) of rank n is a ring generated by D and 2n
indeterminates X1, ..., Xn, Y1, ...,Yn subject to the defining relations:

Yi Xi = ai , XiYi = σi (ai ), Xid = σi (d)Xi , Yid = σ−1
i (d)Yi (d ∈ D),

[Xi , X j ] = [Xi , Y j ] = [Yi , Y j ] = 0, for all i "= j,

where [x, y] = xy − yx . We say that a and σ are the sets of defining elements and
automorphisms of the GWA A, respectively.

The n’th Weyl algebra An = An(K ) over a field (a ring) K is an associative K -
algebra generated by 2n elements X1, ..., Xn, Y1, ...,Yn , subject to the relations:

[Yi , Xi ] = δi j and [Xi , X j ] = [Yi , Y j ] = 0 for all i, j,

where δi j is the Kronecker delta function. The Weyl algebra An is a generalized Weyl
algebra A = D[X , Y ; σ ; a] of rank n where D = K [H1, ..., Hn] is a polynomial ring
in n variables with coefficients in K , σ = (σ1, . . . , σn) where σi (Hj ) = Hj − δi j and
a = (H1, . . . , Hn). The map

An → A, Xi &→ Xi , Yi &→ Yi , i = 1, . . . , n,

is an algebra isomorphism (notice that Yi Xi &→ Hi ).
It is an experimental fact that many quantum algebras of small Gelfand-Kirillov

dimension are GWAs (e.g. U (sl2), Uq(sl2), the quantum Weyl algebra, the quantum
plane, the Heisenberg algebra and its quantum analogues, the quantum sphere and
many others).

The GWA-construction turns out to be a useful one. Using it for large classes of
algebras (including the mentioned ones above), all the simple modules were classified,
explicit formulae were found for the global and Krull dimensions, their elements were
classified in the sense of Dixmier [5], etc.

The generalized Weyl Poisson algebra D[X , Y ; a, ∂}. Our aim is to introduce a
Poisson algebra analogue of generalized Weyl algebras. An associative commutative
algebra A is called a Poisson algebra if it is a Lie algebra (A, {·, ·}) such that {a, xy} =
{a, x}y+x{a, y} for all elements a, x, y ∈ D. Let A be a Poisson algebra with Poisson
bracket {·, ·}, PZ(A) := {a ∈ A | {a, x} = 0 for all x ∈ A} be its Poisson centre and
PDerK (A) be the set of derivations of the Poisson algebra A (see Sect. 2 for details).

Definition Let D be a Poisson algebra, ∂ = (∂1, . . . , ∂n) ∈ PDerK (D)n be an n-tuple
of commuting derivations of the Poisson algebra D, a = (a1, . . . , an) ∈ PZ(D)n be
such that ∂i (a j ) = 0 for all i "= j . The generalized Weyl algebra

A = D[X , Y ; (idD, . . . , idD), a]
= D[X1, . . . , Xn, Y1, . . . ,Yn]/(X1Y1 − a1, . . . , XnYn − an)

admits a Poisson structure which is an extension of the Poisson structure on D and is
given by the rule: For all i, j = 1, . . . , n and d ∈ D,
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The generalized Weyl Poisson... 107

{Yi , d} = ∂i (d)Yi , {Xi , d} = − ∂i (d)Xi and {Yi , Xi } = ∂i (ai ), (1)

{Xi , X j } = {Xi , Y j } = {Yi , Y j } = 0 for all i "= j . (2)

The Poisson algebra is denoted by A = D[X , Y ; a, ∂} and is called the generalized
Weyl Poisson algebra of rank n (or GWPA, for short) where X = (X1, . . . , Xn) and
Y = (Y1, . . . ,Yn).

Existence of generalized Weyl Poisson algebras is proven in Sect. 2 (Lemma 2.1).
The key idea of the proof is to introduce another class of Poisson algebras, elements
of which are denoted by D[X , Y ; ∂,α] (see Sect. 2), for which existence problem
has an easy solution and then to show that each GWPA is a factor algebra of some
D[X ,Y ; ∂,α]. The Poisson algebras D[X , Y ; ∂,α] turn out to be alsoGWPAs (Propo-
sition 2.2).

Poisson simplicity criterion for generalized Weyl Poisson algebras.APoisson alge-
bra is a simple Poisson algebra if the ideals 0 and A of the associative algebra A
are the only ideals I such that {A, I } ⊆ I . The ideal I is called a Poisson ideal
of the Poisson algebra A. An ideal I of the ring D is called ∂-invariant, where
∂ = (∂1, . . . , ∂n) ∈ PDerK (D)n , if ∂i (I ) ⊆ I for all i = 1, . . . , n. The set
D∂ := {d ∈ D | ∂1(d) = 0, . . . , ∂n(d) = 0} is called the ring of ∂-constants of
D.

In Sect. 3, a proof is given of the following Poisson simplicity criterion for gener-
alized Weyl Poisson algebras; see Proposition 3.1 for the notation.

Theorem 1.1 Let A = D[X , Y ; a, ∂} be a GWPA of rank n. Then, the Poisson algebra
A is a simple Poisson algebra iff

1. the Poisson algebra D has no proper ∂-invariant Poisson ideals,
2. for all i = 1, . . . , n, Dai + D∂i (ai ) = D, and
3. the algebra PZ(A) is a field, i.e. char(K ) = 0, PZ(D)∂ is a field and Dα = 0 for

all α ∈ Zn\{0} (see the proposition below).

As a first step in the proof of Theorem 1.1, the following field criterion for the
Poisson centre PZ(A) of a GWPA A = D[X ,Y ; a, ∂} of rank n is proven (in Sect. 3).

Proposition 1.2 Let A = D[X , Y ; a, ∂} be aGWPAof rank n. Then,PZ(A) is a field iff
char(K ) = 0, PZ(D)∂ is a field and Dα = 0 for all α = (α1, . . . ,αn) ∈ Zn\{0}where
Dα = {λ ∈ D∂ | padλ := {λ, ·} = λ

∑n
i=1 αi∂i , λαi∂i (ai ) = 0 for i = 1, . . . , n}.

An explicit description of the Poisson centre is obtained (Proposition 3.1). Many
examples are considered. We show that many classical Poisson algebras are GWPAs.

At the end of Sect. 2, we show that GWPAs appear as associated graded Poisson
algebras of certain GWAs (Proposition 2.3). This is a sort of quantization procedure.

At the end of Sect. 3, examples of simple GWPAs (as Poisson algebras) are consid-
ered (Corollary 3.5). This family of simple Poisson algebras includes, as a particular
case, the classical Poisson polynomial algebras P2n = K [X1, . . . , Xn, Y1, . . . , Yn]
({Yi , X j } = δi j and {Xi , X j } = {Xi , Y j } = {Yi , Y j } = 0 for all i "= j).
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108 V. V. Bavula

2 The generalizedWeyl Poisson algebras

In this section, two new classes of Poisson algebras are introduced and their existence
is proved. One of them is the class of generalized Weyl Poisson algebras (GWPAs).
Examples are considered. At the end of the section, it is shown that some GWPAs are
obtained from GWAs by a sort of quantization procedure (Proposition 2.3).

Poisson algebras.A commutative associative algebra D is called a Poisson algebra
if it is a Lie algebra (D, {·, ·}) such that {a, xy} = {a, x}y + x{a, y} for all elements
a, x, y ∈ D.

For a K -algebra D, let DerK (D) be the set of its K -derivations. If, in addition,
(D, {·, ·}) is a Poisson algebra, then

PDerK (D) := {δ ∈ DerK (D) | δ({a, b}) = {δ(a), b} + {a, δ(b)} for all a, b ∈ D}
is the set of derivations of the Poisson algebra D. The vector space DerK (D) is a Lie
algebra, where [δ, ∂] := δ∂ − ∂δ, and PDerK (D) is a Lie subalgebra of Derk(D). The
set of inner derivations

IDerK (D) := {ada | a ∈ D} (where ada(b) := [a, b] := ab − ba)

is an ideal of the Lie algebra DerK (D) (since [δ, ada] = adδ(a) for all δ ∈ DerK (D)

and a ∈ D). Similarly, the set of inner derivations of the Poisson algebra D

PIDerK (D) := {pada | a ∈ D} (where pada(b) := {a, b})

is an ideal of the Lie algebra PDerK (D) (since [δ, pada] = padδ(a) for all δ ∈
PDerK (D) and a ∈ D). By the very definition, the Poisson algebra D is a Lie alge-
bra with respect to the bracket {·, ·}. The map D → PIDerK (D), a &→ pada , is an
epimorphism of Lie algebras with kernel

PZ(D) := {a ∈ D | {a, D} = 0}

which is called the centre of the Poison algebra (or the Poisson centre of D). So, the
Poisson structure of the algebra D induces the ‘multiplicative structure’ on the Lie
algebra PIDerK (D), i.e. padab(·) = pada(·) b + a padb(·).

Notice that the centre Z(D) := {z ∈ D | zd = dz for all d ∈ D} of any associative
algebra D is invariant under the action of DerK (D): Let z ∈ Z(D), d ∈ D and
∂ ∈ DerK (D); then, applying the derivation ∂ to the equality zd = dz, we obtain
the equality ∂(z)d = d∂(z), i.e. ∂(z) ∈ Z(D). Similarly, the Poisson centre PZ(D) is
invariant under the action of PDerK (D): Let z ∈ PZ(D), d ∈ D and ∂ ∈ PDerK (D);
then, applying the derivation ∂ to the equality {z, d} = 0, we obtain the equality
{∂(z), d} = 0, i.e. ∂(z) ∈ PZ(D).

Let D be a Poisson algebra, ∂ = (∂1, . . . , ∂n) ∈ PDerK (D)n be an n-tuple of
commuting derivations of the Poisson algebra D and X = (X1, . . . , Xn) be an n-
tuple of commuting variables. The polynomial algebra D[X ] = D[X1, . . . , Xn] with
coefficients from D admits a Poisson structure which is an extension of the Poisson
structure on D given by the rule
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The generalized Weyl Poisson... 109

{Xi , X j } = 0 and {Xi , d} = ∂i (d)Xi for 1 ≤ i, j ≤ n and d ∈ D. (3)

The Poisson algebra D[X ] is denoted by D[X; ∂] and is called the Poisson Ore exten-
sion of D of rank n.

Let G be a monoid. Suppose that the associative algebra D = ⊕g∈GDg is a G-
graded algebra (DgDh ⊆ Dgh for all g, h ∈ G). If, in addition, D is a Poisson algebra
and {Dg, Dh} ⊆ Dgh for all g, h ∈ G, then we say that the Poisson algebra D is a
G-graded Poisson algebra.

The Poisson algebra D[X , Y ; ∂,α]. Now, we introduce a class of Poisson algebras
which is used in the proof of existence of GWPAs (Lemma 2.1).

Definition Let D be a Poisson algebra, ∂ = (∂1, . . . , ∂n) ∈ PDerK (D)n be an n-
tuple of commuting derivations of the Poisson algebra D and α = (α1, . . . ,αn) ∈
PZ(D)n . Then, the polynomial algebra D[X , Y ] = D[X1, . . . , Xn,Y1, . . . ,Yn] with
coefficients in D admits a Poisson structure which is an extension of the Poisson
structure on D given by the rule: For all i, j = 1, . . . , n and d ∈ D,

{Yi , d} = ∂i (d)Yi , {Xi , d} = − ∂i (d)Xi and {Yi , Xi } = αi , (4)

{Xi , X j } = {Xi , Y j } = {Yi , Y j } = 0 for all i "= j . (5)

The Poisson algebra D[X , Y ] is denoted by A = D[X ,Y ; ∂,α] where X =
(X1, . . . , Xn) and Y = (Y1, . . . , Yn).

Let us show that the Poisson structure on the polynomial algebra D[X ,Y ] is well
defined. Let n = 1. The Poisson algebra D[X1, Y1; ∂1,α1] is an extension of the
Poisson Ore extension D[X1;−∂1] by adding a commuting variable Y1 where the
Poisson structure on the algebra D[X1][Y1] is given by the rule

{Y1, d} = ∂1(d)Y1 and {Y1, X1} = α1.

The Poisson structure on the algebra D[X1][Y1] is well defined as {Y1, ·} respects the
relation {X1, d} = − ∂1(d)X1 for all d ∈ D:

{Y1, {X1, d}} = {α1, d} + {X1, ∂1(d)Y1} = 0 − ∂21 (d)X1Y1 − ∂1(d)α1

= − {Y1, ∂1(d)X1}.

For n ≥ 1, the Poisson algebra

D[X , Y ; ∂,α] = D[X1, Y1; ∂1,α1] · · · [Xn,Yn; ∂n,αn]. (6)

is an iteration of this construction n times.
Consistency of the defining relations of generalized Weyl Poisson algebra follows

from the next lemma.

Lemma 2.1 We keep the assumptions of the Definition of GWPA A = D[X , Y ; a, ∂}.
Let A = D[X , Y ; ∂, ∂(a)] where ∂(a) = (∂1(a1), . . . , ∂n(an)). Then, X1Y1 −
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110 V. V. Bavula

a1, . . . , XnYn − an ∈ PZ(A) and the generalized Weyl Poisson algebra A =
D[X ,Y ; a, ∂} is a factor algebra of the Poisson algebra A,

A + A/(X1Y1 − a1, . . . , XnYn − an).

Proof By the very definition, the element Zi = XiYi − ai ∈ PZ(A): For all i, j
such that i "= j , {X j , Zi } = ∂ j (ai )X j = 0 and {Y j , Zi } = − ∂ j (ai )Y j = 0 (since
∂ j (ai ) = 0 for all i "= j). For all d ∈ D,

{Zi , d} = {Xi , d}Yi + Xi {d,Yi } = − ∂i (d)XiYi + Xi∂(d)Yi = 0,

{Xi , Zi } = Xi (−∂i (ai ))+ ∂i (ai )Xi = 0,

{Yi , Zi } = ∂i (ai )Yi − ∂i (ai )Yi = 0.

Therefore, Zi ∈ PZ(A). Now, the lemma is obvious. ,-
A Zn-grading of a GWPA A = D[X , Y ; a, ∂}. The GWPA of rank n,

A := D[X , Y ; a, ∂} =
⊕

α∈Zn

Aα, (7)

is a Zn-graded Poisson algebra where Aα = Dvα , vα = ∏n
i=1 vαi (i) and

v j (i) =






X j
i if j > 0,

1 if j = 0,
Y | j |
i if j < 0.

So, AαAβ ⊆ Aα+β and {Aα, Aβ} ⊆ Aα+β for all elements α,β ∈ Zn .
The isomorphisms sI where I ⊆ {1, . . . , n} of GWPAs of rank n. Let A =

D[X1,Y1; a1, ∂1} be a GWPA of rank 1. Clearly, A + D[Y1, X1; a1,−∂1}, i.e. the
D-homomorphism of Poisson algebras

s1 : A = D[X1, Y1; a1, ∂1} → D[Y1, X1; a1,−∂1},
X1 &→ Y1, Y1 &→ X1,

d &→ d (d ∈ D), (8)

is an isomorphism. Similarly, let A = D[X , Y ; a, ∂} be a GWPA of rank n ≥ 1
and I be a subset of the set {1, . . . , n}. Let sI be a bijection of the set X ∪ Y =
{X1, . . . , X1, Y1, . . . ,Yn} which is given by the rule

sI (Xi ) =
{
Yi if i ∈ I ,
Xi if i /∈ I ,

and sI (Yi ) =
{
Xi if i ∈ I ,
Yi if i /∈ I .

Let sign(I )∂ := (ε1∂1, . . . , εn∂n) where εi =
{

−1 if i ∈ I ,
1 if i /∈ I .

Then, the D-

homomorphism of Poisson algebras
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The generalized Weyl Poisson... 111

sI : A → D[sI (X), sI (Y ); a, sign(I )∂},
Xi &→ sI (Xi ), Yi &→ sI (Yi ),

d &→ d (d ∈ D), (9)

is an isomorphism.
Recall that δi j is the Kronecker delta function. The next proposition shows that the

Poisson algebras D[X , Y ; ∂,α] are GWPAs.

Proposition 2.2 The Poisson algebra A = D[X , Y ; ∂,α] is a GWPA of rank n

D[H1, . . . , Hn][X , Y ; H , ∂}

where D[H1, . . . , Hn] is a Poisson polynomial algebra over D such that {Hi , D} = 0
and {Hi , Hj } = 0 for all i, j , H = (H1, . . . , Hn) and ∂i (Hj ) = δi jα j H j for all i, j .

Proof Consider the following elements of the polynomial algebra A = D[X , Y ],

H1 = X1Y1, . . . , Hn = XnYn .

Then, {Hi , D} = 0 and {Hi , Hj } = 0 for all i, j . So, the elements H1, . . . , Hn
belong to the Poisson centre of the Poisson algebra D = D[H1, . . . , Hn]. Let A =
D[H1, . . . , Hn][X , Y ; H , ∂}. It follows from the defining relations of the Poisson
algebras A and A that there is an epimorphism A → A of Poisson algebras given
by the rule Xi &→ Xi , Yi &→ Yi , d &→ d where d ∈ D (since XiYi &→ Hi ) which is
clearly a bijection (it is the ‘identity map’ of associative algebras when we identify
XiYi with Hi ). ,-

By Proposition 2.2, the Poisson algebra A = D[X , Y ; ∂,α] = ⊕β∈ZnAβ is Zn-
graded (AβAγ ⊆ Aβ+γ and {Aβ ,Aγ } ⊆ Aβ+γ for all β, γ ∈ Zn) whereAβ = Dvβ ,

D = D[H1, . . . , Hn] and vβ = ∏n
i=1 vβi (i) where v j (i) =






X j
i if j > 0,

1 if j = 0,
Y | j |
i if j < 0.

Examples of GWPAs 1. If D is a algebra with trivial Poisson bracket, then any
choice of elements a = (a1, . . . , an) and ∂ = (∂1, . . . , ∂n) ∈ DerK (D)n such that
∂i (a j ) = 0 for all i "= j determines a GWPA D[X ,Y ; a, ∂} of rank n. If, in addition,
n = 1, then there is no restriction on a1 and ∂1.

2. The classical Poisson polynomial algebra P2n = K [X1, . . . , Xn, Y1, . . . , Yn]
({Yi , X j } = δi j and {Xi , X j } = {Xi , Y j } = {Yi , Y j } = 0 for all i "= j) is a GWPA

P2n = K [H1, . . . , Hn][X , Y ; a, ∂} (10)

where K [H1, . . . , Hn] is a Poisson polynomial algebra with trivial Poisson bracket,
a = (H1, . . . , Hn), ∂ = (∂1, . . . , ∂n) and ∂i = ∂

∂Hi
(via the isomorphism of Poisson

algebras P2n → K [H1, . . . , Hn][X , Y ; a, ∂}, Xi &→ Xi , Yi &→ Yi ).
3. A = D[X , Y ; a, ∂} where D = K [H1, . . . , Hn] is a Poisson polynomial

algebra with trivial Poisson bracket, a = (a1, . . . , an) ∈ K [H1] × · · · × K [Hn],
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112 V. V. Bavula

∂ = (∂1, . . . , ∂n) where ∂i = bi∂Hi (where ∂Hi = ∂
∂Hi

) and bi ∈ K [Hi ]. In particular,
D[X ,Y ; (H1, . . . , Hn), (∂H1 , . . . , ∂Hn )} = P2n is the classical Poisson polynomial
algebra.

Let S be a multiplicative set of D. Then, S−1A + (S−1D)[X ,Y ; a, ∂} is a GWPA.
In particular, for S = {Hα |α ∈ Zn}, we have K [H±1

1 , . . . , H±1
n ][X , Y ; a, ∂}. In the

case n = 1, the Poisson algebra

K [H±1
1 ][X1, Y1; a1,−H1

d
dH1

}

where a1 ∈ K [H±1
1 ] is, in fact, isomorphic to a Poisson algebra in the paper of Cho

and Oh [4] which is obtained as a quantization of a certain GWA with respect to the
quantum parameter q. In [4, Theorem 3.7], a Poisson simplicity criterion is given for
this Poisson algebra.

4. Let D = K [C, H ] be a Poisson polynomial algebra with trivial Poisson bracket,
a ∈ D and ∂ is a derivation of the algebra D. The GWPA A = D[X , Y ; a, ∂} of rank
1 is a generalization of some Poisson algebras that are associated with U (sl2), see the
next example.

5. Let U = U (sl2) be the universal enveloping algebra of the Lie algebra

sl2 = K 〈X ,Y , H | [H , X ] = X , [H , Y ] = −Y , [X , Y ] = 2H〉

over a field K of characteristic zero. The associated graded algebra gr(U )with respect
to the filtration F = {Fi }i∈N that is determined by the total degree of the elements X ,
Y and H is a Poisson polynomial algebra K [X , Y , H ] where

{H , X} = X , {X , Y } = −Y and {X ,Y } = 2H .

The element C = XY + H2 belongs to the Poisson centre of the Poisson polynomial
algebra gr(U ). The Poisson algebra

gr(U ) = K [C, H ][X ,Y ; a = C − H2, ∂H } (11)

is a GWPA of rank 1 where ∂H := ∂
∂H .

6. Let U be the universal enveloping algebra of the Heisenberg Lie algebra

Hn = K 〈X1, . . . , Xn, Y1, . . . , Yn, Z | [Xi , Y j ] = δi j Z , [Xi , X j ] = [Yi , Y j ] = 0 for all i, j;
Z is a Poisson central element〉.

The associated graded algebra gr(U ) with respect to the filtration by the total degree
of the canonical generators is a Poisson polynomial algebra K [X1, . . . , Xn, Y1, . . . ,
Yn, Z ] where, for all i, j ,

{Xi , Y j } = δi j Z , {Xi , X j } = {Yi , Y j } = 0

and the element Z belongs to the Poisson centre of gr(U ). Then, the polynomial
algebra
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The generalized Weyl Poisson... 113

gr(U ) = D[X , Y ; a, ∂} (12)

is a GWPA of rank n where D = K [H1, . . . , Hn, Z ] is a Poisson polynomial algebra
with trivial Poisson bracket, X = (X1, . . . , Xn), Y = (Y1, . . . ,Yn), a = (a1 =
H1, . . . , an = Hn), ∂ = (Z∂H1 , . . . , Z∂Hn ) and ∂Hi := ∂

∂Hi
.

Let As = Ds[X(s), Y(s); a(s), ∂(s)} be GWPAs of rank ns where s = 1, . . . ,m. The
tensor product of algebras

A =
m⊗

s=1

As =
( m⊗

s=1

Ds

)
[X ,Y ; a, ∂} (13)

is a GWPA of rank n1+· · ·+nm where X = (X(1), . . . , X(m)), Y = (Y(1), . . . ,Y(m)),
a = (a(1), . . . , a(m)) and ∂ = (∂(1), . . . , ∂(m)). The Poisson structure on A is a tensor
product of Poisson structures on As , i.e. for all elementsu = ⊗m

s=1us ,v = ⊗m
s=1vs ∈ A

(where us, vs ∈ As),

{u, v} =
m∑

s=1

u1v1 ⊗ · · · ⊗ {us, vs} ⊗ · · · ⊗ umvm .

Example The classical Poisson polynomial algebra P2n [see (10)] is the tensor product
P⊗n
2 of n copies of the classical Poisson polynomial algebra P2.

An algebraic torus action on a GWPA Let A = D[X , Y ; a, ∂} be a GWPA of
rank n and AutPois(A) be the group of automorphisms of the Poisson algebra A.
Elements of AutPois(A) are called Poisson automorphisms of A. For each element
λ = (λ1, . . . , λn) ∈ K ∗n , the K -algebra homomorphism

tλ : A → A, Xi &→ λi Xi , Yi &→ λ−1
i Yi , d &→ d (d ∈ D),

is an automorphism of the Poisson algebra A. The subgroup Tn = {tλ | λ ∈ K ∗n} of
AutPois(A) is an algebraic torus Tn + K ∗n , tλ &→ λ. For all α ∈ Zn and uα ∈ Aα =
Dvα , tλ(uα) = λα · uα where λα = ∏n

i=1 λ
αi
i .

The subgroup

AutPois(D)∂,a := {σ ∈ AutPois(D) | σ∂i = ∂iσ and σ (ai ) = ai for i = 1, . . . , n}

of AutPois(D) can be seen as a subgroup of AutPois(A) where each automorphism
σ ∈ Aut∂,aPois(D) trivially acts at X and Y , i.e. σ (Xi ) = Xi and σ (Yi ) = Yi . Clearly,

Tn × AutPois(D)∂,a ⊆ AutPois(A). (14)

Associated graded algebra of a GWA is a GWPA. Let A = D[X ,Y ; σ, a] be a GWA
of rank n such that D = ∪i∈NDi is a filtered algebra (Di D j ⊆ Di+ j for all i, j ∈ N;
D−1 = 0),

[di , d j ] ∈ Di+ j−ν for all di ∈ Di and d j ∈ Dj where ν is a positive integer;
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114 V. V. Bavula

σi (Dj ) = Dj and (σi −1)(Dj ) ⊆ Dj−ν for all i = 1, . . . , n and j ∈ N. Suppose that
ai ∈ Ddi \Ddi−1 for some di ≥ 1. The algebra A admits a filtration {As}s∈ 1

2N
where

As =
∑

i+d·α≤s

Divα, d = (d1, . . . , dn), α = (α1, . . . ,αn) ∈ Zn and d · α

= 1
2

n∑

i=1

di |αi |.

The associated graded algebra

gr(A) = gr(D)[X , Y ; (id, . . . , id), a]
= gr(D)[X1, . . . , Xn, Y1, . . . ,Yn]/(X1Y1 − a1, . . . , XnYn − an)

is a commutativeGWAwhere ai = ai+Ddi−1 ∈ Ddi /Ddi−1. For all elements us ∈ As
and ut ∈ At ,

[us, ut ] ∈ As+t−ν . (15)

Let us = us + As−1 ∈ As/As−1 and ut = ut + At−1 ∈ At/At−1. The bracket

{us, ut } := [us, ut ] := [us, ut ] + As+t−ν−1 ∈ As+t−ν/As+t−ν−1

determines the Poisson structure on gr(A). For each i = 1, . . . , n, the map

∂i := σi − 1 : gr(D) → gr(D), gr(D) j 3 b j &→ (σi − 1)(b j )+ Dj−ν−1 ∈ gr(D) j−ν ,

is a K -derivation of the commutative algebra gr(D). The derivations ∂1, . . . , ∂n com-
mute since the automorphisms σ1, . . . , σn commute. Notice that

[Xi , b j ] = (σi − 1)(b j )Xi and [Yi , b j ] = (σ−1
i − 1)(b j )Yi .

Hence, {Xi , b j } = ∂i (b j )Xi and {Yi , b j } = −∂i (b j )Yi since

(σ−1
i − 1)(b j ) = − (σi − 1)σ−1

i (b j ) ≡ −∂i (b j ) mod Dj−ν−1.

Therefore, the Poisson algebra gr(A) is a GWPA gr(D)[X ,Y ; a,−∂} where a =
(a1, . . . , an) and−∂ = (−∂1, . . . ,−∂n). So, we proved that the following proposition
holds.

Proposition 2.3 Let A = D[X , Y ; σ, a] be a GWA of rank n such that D = ∪i∈NDi
is a filtered algebra; [di , d j ] ∈ Di+ j−ν for all di ∈ Di and d j ∈ Dj where ν is a
positive integer; σi (Dj ) = Dj and (σi − 1)(Dj ) ⊆ Dj−ν for all i = 1, . . . , n and
j ∈ N. Suppose that ai ∈ Ddi \Ddi−1 for some di ≥ 1. Let {As}s∈ 1

2N
be the filtration

as above. The associated graded algebra gr(A) is a GWPA gr(D)[X ,Y ; a,−∂}where
a and −∂ are defined above.
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The generalized Weyl Poisson... 115

Example 1. The n’th Weyl algebra An is a GWA K [H1, . . . , Hn][X , Y ; σ, a] where
σi (Hj ) = Hj − δi j and ai = Hi for i, j = 1, . . . , n. The polynomial algebra D =
K [H1, . . . , Hn] admits a natural filtration {Di }i∈N by the total degree of the variables
H1, . . . , Hn . The automorphisms σ1, . . . , σn satisfy the conditions of Proposition 2.3
with ν = 1, d1 = · · · = dn = 1 and ∂1 = − ∂

∂H1
, . . . , ∂n = − ∂

∂Hn
. Notice that

gr(D) = D. By Proposition 2.3, the algebra

gr(An) + D[X , Y ]/(X1Y1 − H1, . . . , XnYn − Hn) + K [X ,Y ] = P2n

is a GWPA D[X , Y ; (H1, . . . , Hn), (
∂

∂H1
, . . . , ∂

∂Hn
)} which is the classical Pois-

son algebra P2n with the canonical Poisson bracket ({Yi , X j } = δi j , {Xi , X j } =
{Xi ,Y j } = {Yi , Y j } = 0 for all i, j such that i "= j).

2. The universal enveloping algebraU = U (sl2) is the GWA A = K [C, H ][X , Y ;
σ, a] of rank 1 where σ (H) = H −1, σ (C) = C and a = C−H(H+1) (the element
C is the Casimir element, C = Y X + H(H + 1)). The filtration F = {Fi }i∈N on
U that was considered above (which is defined by the total degree of the canonical
generators X , Y and H ) induces a filtration {Di := D ∩ Fi }i∈N on the polynomial
algebra D = K [C, H ]. Clearly,

Di =
⊕

2s+t≤i

KCsHt for all i ∈ N.

The automorphism σ and the filtration {Di }i∈N satisfy the conditions of Propo-
sition 2.3 where d1 = 2 and ν = − 1. The associated graded Poisson algebra
gr(A) + K [C, H ][X , Y ;C − H2, ∂H } is canonically isomorphic to the associated
graded Poisson algebra gr(U ) as N-graded Poisson algebra (since gr(A) 1

2+i = 0 for
all i ∈ N), see (11).

The filtration {D′
i := ⊕ j≤i K [C]Hi }i∈N also satisfies the conditions of Proposi-

tion 2.3 where d1 = 2 and ν = − 1 but the associated graded algebra gr′(A) is
a GWPA K [C, H ][X ,Y ;−H2, ∂H }. The associated graded Poisson algebras gr(A)
and gr′(A) are not isomorphic since the algebra gr(A) is smooth but the algebra
gr′(A) + K [C] ⊗ K [X , Y ](XY − H2) is singular as the points {(C, H , X ,Y ) =
(λ, 0, 0, 0) | λ ∈ K } are singular. So, the Poisson algebras gr(A) and gr′(A) are also
not isomorphic.

3 Poisson simplicity criterion for generalizedWeyl Poisson algebras

In this section, for generalizedWeyl Poisson algebras, a proof of the Poisson simplicity
criterion (Theorem 1.1) is given, an explicit description of their Poisson centre is
obtained (Proposition 3.1) and a proof of the criterion for the Poisson centre being a
field (Proposition 1.2) is given.

Let A be a Poisson algebra. An ideal I of the associative algebra A is called a
Poisson ideal if {A, I } ⊆ I . A Poisson ideal is also called an ideal of the Poisson
algebra. Suppose thatD be a set of derivations of the associative algebra A. Then, the
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116 V. V. Bavula

set AD := {a ∈ A | ∂(a) = 0 for all ∂ ∈ D} is a subalgebra of A which is called the
algebra of D-constants (or the algebra of constants for D). An ideal J of the algebra
A is called a D-invariant ideal if ∂(J ) ⊆ J for all ∂ ∈ D.

The Poisson centre of a GWPA. Let A = D[X , Y ; a, ∂} be a GWPA of rank n. For
all elements λ, d ∈ D, α ∈ Zn and i = 1, . . . , n

{d, λvα} = (−padλ + λ

n∑

i=1

αi∂i )(d)vα, (16)

{v±1(i), λvα} =
{

∓∂i (λ)vα±ei if αi = 0 or sign(αi ) = ±,

(∓∂i (λ)ai + λαi∂i (ai ))vα±ei if sign(αi ) = ∓.

(17)

The next proposition describes the Poisson centre of a GWPA.

Proposition 3.1 Let A = D[X ,Y ; a, ∂} be a GWPA of rank n. Then, PZ(A) =⊕
α∈Zn PZ(A)α is a Zn-graded (associative) algebra where PZ(A)α = Dαvα , D0 =

PZ(D)∂ and, for all α "= 0, Dα = {λ ∈ D∂ | padλ = λ
∑n

i=1 αi∂i , λαi∂i (ai ) = 0 for
i = 1, . . . , n}.
Proof The GWPA A = ⊕α∈Zn Aα is a Zn-graded Poisson algebra, hence so is its
Poisson centre, i.e. PZ(A) = ⊕α∈ZnPZ(A)α where PZ(A)α = PZ(A) ∩ Aα . Since
Aα = Dvα for all α ∈ Zn , statement 2 follows from (16) and (17). ,-

The next corollary shows that, in general, the Poisson centre of a GWPA A is small.

Corollary 3.2 Let A = D[X , Y ; a, ∂} be aGWPAof rank n. Suppose that char(K ) = 0
and the elements ∂1(a1), . . . , ∂n(an) are nonzero divisors in the algebra D (e.g. D is
a domain and ∂1(a1) "= 0, . . . , ∂n(an) "= 0). Then, PZ(A) = PZ(D)∂ .

For an element α = (α1, . . . ,αn) ∈ Zn , the set supp(α) := {i |αi "= 0} is called
the support of α.

Corollary 3.3 Let A = D[X , Y ; a, ∂} be a GWPA of rank n. Suppose that char(K ) =
0. Then, for all elements α ∈ Zn\{0}, Dα ⊆ D∂,pad(∂(a))∩annD{∂i (ai ) | i ∈ supp(α)},
i.e.

1. {Dα, ai } = 0 for i = 1, . . . , n, and
2. Dα∂i (ai ) = 0 for all i such that αi "= 0.

Proof By Proposition 3.1.(3), Dα∂i (ai ) = 0 for all i ∈ supp(α) (since char(K ) = 0).
Then, for all λ ∈ Dα and i = 1, . . . , n, {λ, ai } = padλ(ai ) =

∑n
i=1 λαi∂i (ai ) = 0,

i.e. {Dα, ai } = 0 for i = 1, . . . , n. !
Let A = ⊕

i∈Z Ai be a Z-graded (associative) algebra. Each element a ∈ A is a
unique sum a = ∑

i∈Z ai where ai ∈ Ai . The length l(a) of the element a is equal
to −∞ if a = 0, and, for a "= 0, l(a) := n − m where n = max{i | ai "= 0} and
m = min{i | ai "= 0}.

Let A be a Poisson algebra and z ∈ PZ(A). The zA is a Poisson ideal of A. If the
Poisson algebra A is simple, then necessarily the Poisson centre PZ(A) is a field.
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The generalized Weyl Poisson... 117

Proof of Proposition 1.2 (⇒) Suppose that p = char(K ) "= 0. Then, by Proposi-
tion 3.1, the element 1 + X p of PZ(A) is not invertible. Therefore, we must have
p = 0. The algebras A and PZ(A) are Zα-graded algebras and PZ(A)0 = PZ(D)∂ .
Therefore, PZ(D)∂ must be a field.

Suppose that Dα "= 0 for some α "= 0. Then, αi "= 0 for some i . Fix a nonzero
element of PZ(A)α = Dαvα , say λvα where λ ∈ Dα . Since λvα is a unit, (λvα)

−1 =
µv−α (since the algebra A is a Zn-graded algebra), and so

1 = λvα · µv−α = λµa|α| and 1 = µv−α · λvα = µλa|α|

where a|α| := ∏n
i=1 a

|αi |
i ∈ PZ(A). Hence, a|α| is a unit in PZ(A); then, the elements

λ and µ are units in D. Clearly, v := 1+ λvα ∈ PZ(A). The algebra A is a Zn-graded
algebra. In particular, it is a Zei -graded algebra (since Zei ⊆ Zn). Let li be the length
with respect to the Zei -grading (which is a Z-grading). Then, for all nonzero elements
u ∈ A,

li (uv) = li (u)+ li (v) ≥ li (v) = |αi | > 0,

since the elements 1 and λ are units. This implies that the element u is not a unit.
Therefore, Dα = 0 for all α ∈ Zn\{0}, by Proposition 3.1.(3).

(⇐) By Proposition 3.1, PZ(A) = PZ(D)∂ is a field. ,-

An ideal I of an algebra A is called a proper ideal if I "= 0, A.

Proof of Theorem 1.1 (⇒) Suppose that a is a proper ∂-invariant Poisson ideal of the
Poisson algebra D, then aA = ⊕α∈Znavα is a proper ideal of the Poisson algebra A.
So, the first condition holds.

Suppose that b := Dai + D∂i (ai ) "= D for some i . Then,

I =
⊕

α∈Zn ,αi "=0

Dvα ⊕
⊕

α∈Zn ,αi=0

bvα

is a proper ideal of the Poisson algebra A. So, the second condition holds.
The third condition obviously holds. (If a nonzero element z of PZ(A) is also a

nonunit, then zA is a proper Poisson ideal of A).
(⇐) Suppose that conditions 1 and 2 hold. Then, the implication follows from the

Claim.
Claim. Suppose that conditions 1 and 2 hold. Then, every nonzero Poisson ideal of

A intersects nontrivially PZ(A).
Let I be a nonzero Poisson ideal A. We have to show that I ∩ PZ(A) "= 0. Let

u = ∑
α∈Zn uα be a nonzero element of I where uα ∈ Aα . The set supp(u) = {α ∈

Zn | uα "= 0} is called the support of u. Recall that, for α ∈ Zn , |α| = α1 + · · · + αn .
The additive group Zn admits the degree-by-lexicographic ordering ≤ where α < β

iff either |α| < |β| or |α| = |β| and there exists an element i ∈ {1, . . . , n} such that
α j = β j for all j < i and αi < βi . Clearly, the inequalities α ≤ β and β ≤ α

are equivalent to the equality α = β. The partially ordered set (Zn,≤) is a linearly
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118 V. V. Bavula

ordered set (for all distinct elements α,β ∈ Zn either α > β or α < β) and α < β

implies that α + γ < β + γ for all γ ∈ Zn . Every nonzero element b = ∑
α∈Zn bα of

A (where bα ∈ Aα) can be written as

b = bα + · · ·

where α is the maximal element of supp(b) and the three dots denote smaller terms
(i.e. the sum

∑
β<α bβ ). The term bα = λαvα is called the leading term of b, denoted

lt(b), and the element λα ∈ D is called the leading coefficient of b, denoted lc(b).
Since the algebra A is aZn-graded Poisson algebra, for all nonzero elements b, c ∈ A,

lt(bc) = lt(b)lt(c) (18)

provided lc(b)lc(c) "= 0, and

lt({b, c}) = {lt(b), lt(c)} (19)

provided {lt(b), lt(c)} "= 0.
Up to isomorphism in (8) (i.e. interchanging some Xi and Yi , if necessary), we

can assume that the ideal I contains a nonzero element u = λαXα + · · · where
α1 ≥ 0, . . . ,αn ≥ 0. Then, the set of leading coefficients

a = {λα | u = λαXα + · · · ∈ I , all αi ≥ 0}

of elements of I is a ∂-invariant ideal of the ring D since

d1ud2 = d1λαd2Xα + · · · if d1λαd2 "= 0 (d1, d2 ∈ D),

uXβ = λαXα+β + · · · ,
{u, Xi } = ∂i (λα)Xα+ei + · · · if ∂i (λα) "= 0.

Therefore, by condition 1, there exists an element u = Xα + · · · ∈ I (i.e. λα = 1).
Then, using the equalities

Yi Xα
i = ai Xα−ei and {Yi , Xα} = αi∂i (ai )Xαi−ei ,

condition 2 and the fact that char(K ) = 0 (condition 3), we can assume that u =
1+ · · · ∈ I , i.e. u = 1+∑

α<0 uα . For a finite set S, we denote by |S| the number of
its elements. Let

m = min{|supp(u)| | u = 1+ · · · ∈ I }.

We can assume that |supp(u)| = m. The Poisson algebra A is a Zn-graded Poisson
algebra. Hence, by the choice of m, for all elements d ∈ D and i = 1, . . . , n:

0 = {d, u} =
∑

α<0

{d, uα}, i.e. {d, uα} = 0,
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The generalized Weyl Poisson... 119

0 = {Xi , u} =
∑

α<0

{Xi , uα}, i.e. {Xi , uα} = 0,

0 = {Yi , u} =
∑

α<0

{Yi , uα}, i.e. {Yi , uα} = 0,

i.e. all uα ∈ PZ(A), and so 0 "= u ∈ PZ(A), as required. ,-
Corollary 3.4 Let A = D[X , Y ; a, ∂} be a GWPA of rank n. Suppose that the condi-
tions 1 and 2 of Theorem 1.1 hold. Then, every nonzero Poisson ideal of A intersects
PZ(A) nontrivially.

Proof The corollary is precisely the Claim in the proof of Theorem 1.1. ,-
Corollary 3.5 Let D = K [H1, . . . , Hn] be a Poisson polynomial algebra with trivial
Poisson bracket, a = (a1, . . . , an) where ai ∈ K [Hi ] and ∂ = (b1∂H1, . . . , bn∂Hn )

where bi ∈ K [Hi ]. Then, the GWPA A = D[X , Y ; a, ∂} of rank n is a simple Poisson
algebra iff char(K ) = 0, b1, . . . , bn ∈ K ∗ := K\{0} and K [Hi ]ai + K [Hi ] daidHi

=
K [Hi ] for i = 1, . . . , n.

Proof The corollary follows from Theorem 1.1. In more detail, condition 2 of Theo-
rem1.1 is equivalent to the conditions K [Hi ]ai+K [Hi ] daidH1

= K [Hi ] for i = 1, . . . , n
(since ai ∈ K [Hi ]). Condition 1 of Theorem 1.1 is equivalent to the condition
char(K ) = 0 and b1, . . . , bn ∈ K ∗ := K\{0} (since bi D is a ∂-invariant ideal of
D). If conditions 1 and 2 hold, then condition 3 of Theorem 1.1 holds automatically
since D∂ = K = PZ(D) (then Dα = 0 for all α ∈ Zn\{0}). ,-

By Corollary 3.5, the classical Poisson polynomial algebra

P2n + K [H1, . . . , Hn][X , Y ; (H1, . . . , Hn), (∂H1 , . . . , ∂Hn )}

is a simple Poisson algebra.
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