

Poisson Algebras II, Non-commutative Algebras

Maram Alossaimi (Supervisor: Prof. Vladimir Bavula)

School of Mathematics and Statistics, malossaimi1@sheffield.ac.uk\maram.alosaimi@gmail.com

1. Introduction

A (commutative) algebra D over a field K is called a *Poisson algebra* if there exists a bilinear product $\{\cdot, \cdot\}: D \times D \to D$, called a *Poisson bracket*, such that

1. $\{a, b\} = -\{b, a\}$ for all $a, b \in D$ (anti-commutative),

2. $\{a, \{b, c\}\} + \{b, \{c, a\}\} + \{c, \{a, b\}\} = 0$ for all $a, b, c \in D$ (Jacobi identity), and

3. $\{ab, c\} = a\{b, c\} + \{a, c\}b$ for all $a, b, c \in D$ (Leibniz rule).

Definition. Let D be a Poisson algebra. An ideal I of the algebra D is a *Poisson ideal* of D if $\{D, I\} \subseteq I$. We denote by $\langle a \rangle$ the Poisson ideal of D generated by the element a. Moreover, a Poisson ideal P of the algebra D is a Poisson prime ideal of D provided

 $IJ \subseteq P \Rightarrow I \subseteq P$ or $J \subseteq P$,

where I and J are Poisson ideals of D. A set of all Poisson prime ideals of D is called the *Poisson spectrum* of D and is denoted by PSpec(D).

Definition. Let D be a Poisson algebra over a field K. A K-linear map $\alpha : D \to D$ is a Poisson derivation of D if α is a K-derivation of D and

 $\alpha(\{a,b\}) = \{\alpha(a),b\} + \{a,\alpha(b)\}$ for all $a,b \in D$.

Class II: $\alpha + \beta = f\partial_t + \frac{1}{\lambda}f\partial_t = (1 + \frac{1}{\lambda})f\partial_t = 0$ and $u \neq 0$

Class II.1:

If f = 0, i.e. $\alpha = \beta = 0$ and $u \in K[t] \setminus \{0\}$ then we have the Poisson algebra $\mathcal{A}_{11} = (K[t]; 0, 0, c, u)$ with Poisson bracket

$$\{t, y\} = 0, \ \{t, x\} = 0 \text{ and } \{y, x\} = cyx + u.$$
 (5)

There are four subclasses.

Class II.1a:

If c = 0 and $u \in K^{\times}$ then we have the Poisson algebra $\mathcal{A}_{12} = (K[t]; 0, 0, 0, u)$ with Poisson bracket

$$\{t, y\} = 0, \ \{t, x\} = 0 \text{ and } \{y, x\} = u.$$
 (6)

The Poisson spectrum of \mathcal{A}_{12} is $\{\mathfrak{p} \otimes K[x, y] \mid \mathfrak{p} \in \operatorname{Spec}(K[t])\}$.

Class II.1b:

If $c = 0, u \in K[t] \setminus K$ and $R_u = \{\lambda_1, \ldots, \lambda_s\}$ is the set of distinct roots of u then $\mathcal{A}_{13} = (K[t]; 0, 0, 0, u)$ is a Poisson algebra with Poisson bracket (6). The Poisson spectrum of A_{13} is in the below diagram, 3.

A set of all Poisson derivations of D is denoted by $PDer_K(D)$.

2. How did we get our class of Poisson algebras \mathcal{A} ?

Lemma. [Oh] Let D be a Poisson algebra over a field K, $c \in K$, $u \in D$ and α , $\beta \in PDer_K(D)$ such that

$$\alpha\beta = \beta\alpha \quad and \quad \{d, u\} = (\alpha + \beta)(d)u \quad for \ all \ d \in D.$$
 (1)

Then the polynomial ring D[x, y] becomes a Poisson algebra with Poisson bracket

$$\{d, y\} = \alpha(d)y, \quad \{d, x\} = \beta(d)x \quad and \quad \{y, x\} = cyx + u \text{ for all } d \in D.$$
(2)

The Poisson algebra D[x, y] with Poisson bracket (2) is denoted by $(D; \alpha, \beta, c, u)$.

3. How did we construct A?

We aim to classify all the Poisson algebra's $\mathcal{A} = (K[t]; \alpha, \beta, c, u)$, where K is an algebraically closed field of characteristic zero and K[t] is the polynomial Poisson algebra (with necessarily trivial Poisson bracket, i.e. $\{a, b\} = 0$ for all $a, b \in K[t]$). Notice that, it follows from the second part of equality (1) that

 $0 = \{d, u\} = (\alpha + \beta)(d)u \text{ for all } d \in K[t],$

which implies that precisely one of the three classes holds:

(Class I: $\alpha + \beta = 0$ and u = 0), (Class II: $\alpha + \beta = 0$ and $u \neq 0$) or (Class III: $\alpha + \beta \neq 0$ and u = 0).

4. What have we done so far?

The next lemma states that in order to complete the classification of Poisson algebra class \mathcal{A} . This lemma describes all commuting pairs of derivations of the polynomial Poisson algebra K[t].

Class II.1c:

If c and u in K^{\times} , i.e. $R_u = \emptyset$ then we have the Poisson algebra $\mathcal{A}_{14} = (K[t]; 0, 0, c, u)$ with Poisson bracket

$$\{t, y\} = 0, \ \{t, x\} = 0 \text{ and } \{y, x\} = cyx + u := \rho.$$
 (7)

The Poisson spectrum of A_{14} is in the below diagram, 4.

Lemma. Let K[t] be the polynomial Poisson algebra with trivial Poisson bracket and $\alpha, \beta \in PDer_K =$ $\operatorname{Der}_{K}(K[t]) = K[t]\partial_{t}$ such that $\alpha = f\partial_{t}$ and $\beta = g\partial_{t}$, where $f, g \in K[t] \setminus \{0\}, \partial_{t} = d/dt$ then

$$\alpha\beta = \beta\alpha \quad \text{if and only if} \quad g = \frac{1}{\lambda}f \quad \text{for some} \quad \lambda \in K^{\times} := K \setminus \{0\}.$$
 (3)

By using the previous lemma, we can assume that $\alpha = f\partial_t$, $\beta = \lambda^{-1} f\partial_t$, $c \in K$, $u \in K[t]$, where $f \in K[t]$ and $\lambda \in K^{\times}$. Then we have the class of Poisson algebras $\mathcal{A} = K[t][x, y] = (K[t]; \alpha = f\partial_t, \beta = \lambda^{-1}f\partial_t, c, u)$ with Poisson bracket defined by the rule:

$$\{t, y\} = fy, \quad \{t, x\} = \lambda^{-1} fx \text{ and } \{y, x\} = cyx + u.$$
 (4)

The first class of Poisson algebras \mathcal{A}

The first class (Class I) of the Poisson algebras A has two main subclasses: Class I.1 and Class I.2. The results were indicated in these six Poisson algebras A_2, A_3, A_6, A_7, A_9 and A_{10} . Also, we presented some of their Poisson spectrum in diagrams, see diagram 1.

Diagram 1: The 'Poisson Algebras I' poster

The first part of the second class (Class II) of Poisson algebras A is presented in this poster and the next diagram shows the second class structure.

Diagram 4: The containment information between Poisson prime ideals of \mathcal{A}_{14}

Class II.1d:

If $c \in K^{\times}$, $u \in K[t] \setminus K$ and $R_u = \{\lambda_1, \ldots, \lambda_s\}$ is the set of distinct roots of u then $\mathcal{A}_{15} = (K[t]; 0, 0, c, u)$ is a Poisson algebra with Poisson bracket

$$\{t, y\} = 0, \ \{t, x\} = 0 \text{ and } \{y, x\} = \rho.$$
 (8)

It follows that the element $\rho = cyx + u$ is an irreducible polynomial in A_{15} . The Poisson spectrum of A_{15} is in the below diagram, 5

Diagram 5: The containment information between Poisson prime ideals of \mathcal{A}_{15}

5. Conclusion / Future research

A classification of Poisson prime ideals of Poisson algebras \mathcal{A} was obtained in 12 classes out of 26. We will complete the classification. Then we aim to classify some simple finite dimensional Poisson modules over A.

Acknowledgements

I would like to thank my supervisor Vlad for providing guidance and feedback throughout this research. Also, I would like to thank my sponsor the University of Imam Mohammad Ibn Saud Islamic.

References

- [Bav1] V. V. Bavula, The Generalized Weyl Poisson algebras and their Poisson simplicity criterion. Letters in Mathematical Physics, **110** (2020), 105 - 119.
- [Bav2] V. V. Bavula, The PBW Theorem and simplicity criteria for the Poisson enveloping algebra and the algebra of Poisson differential operators, submitted, arxiv.2107.00321.
- [GoWa] K. R. Goodearl and R. B. Warfield. An introduction to noncommutative noetherian rings. 2nd ed. New York: Cambridge University Press. (2004), pages 1 - 85, 105 - 122 and 166 - 186.
- [Oh] S.-Q. Oh, Poisson polynomial rings. *Communications in Algebra*, **34** (2006), 1265 1277.