
1. Introduction
A (commutative) algebra D over a field K is called a Poisson algebra if there exists a bilinear product
{·, ·} : D ×D → D, called a Poisson bracket, such that
1. {a, b} = −{b, a} for all a, b ∈ D (anti-commutative),
2. {a, {b, c}} + {b, {c, a}} + {c, {a, b}} = 0 for all a, b, c ∈ D (Jacobi identity), and
3. {ab, c} = a{b, c} + {a, c}b for all a, b, c ∈ D (Leibniz rule).

Definition. Let D be a Poisson algebra. An ideal I of the algebra D is a Poisson ideal of D if {D, I} ⊆ I .
We denote by 〈a〉 the Poisson ideal of D generated by the element a. Moreover, a Poisson ideal P of the
algebra D is a Poisson prime ideal of D provided

IJ ⊆ P ⇒ I ⊆ P or J ⊆ P,

where I and J are Poisson ideals of D. A set of all Poisson prime ideals of D is called the Poisson spectrum
of D and is denoted by PSpec(D).

Definition. Let D be a Poisson algebra over a field K. A K-linear map α : D → D is a Poisson derivation
of D if α is a K-derivation of D and

α({a, b}) = {α(a), b} + {a, α(b)} for all a, b ∈ D.
A set of all Poisson derivations of D is denoted by PDerK(D).

2. How did we get our class of Poisson algebras A?

Lemma. [Oh] Let D be a Poisson algebra over a field K, c ∈ K, u ∈ D and α, β ∈ PDerK(D) such that

αβ = βα and {d, u} = (α + β)(d)u for all d ∈ D. (1)

Then the polynomial ring D[x, y] becomes a Poisson algebra with Poisson bracket

{d, y} = α(d)y, {d, x} = β(d)x and {y, x} = cyx + u for all d ∈ D. (2)

The Poisson algebra D[x, y] with Poisson bracket (2) is denoted by (D;α, β, c, u).

3. How did we construct A?

We aim to classify all the Poisson algebra’s A = (K[t];α, β, c, u), where K is an algebraically closed field
of characteristic zero and K[t] is the polynomial Poisson algebra (with necessarily trivial Poisson bracket, i.e.
{a, b} = 0 for all a, b ∈ K[t]). Notice that, it follows from the second part of equality (1) that

0 = {d, u} = (α + β)(d)u for all d ∈ K[t],

which implies that precisely one of the three classes holds:

(Class I: α+ β = 0 and u = 0), (Class II: α+ β = 0 and u 6= 0) or (Class III: α+ β 6= 0 and u = 0).

4. What have we done so far?
The next lemma states that in order to complete the classification of Poisson algebra class A. This lemma
describes all commuting pairs of derivations of the polynomial Poisson algebra K[t].

Lemma. Let K[t] be the polynomial Poisson algebra with trivial Poisson bracket and α, β ∈ PDerK=
DerK(K[t])=K[t]∂t such that α = f∂t and β = g∂t, where f, g ∈ K[t]\{0}, ∂t = d/dt then

αβ = βα if and only if g =
1

λ
f for some λ ∈ K× := K\{0}. (3)

By using the previous lemma, we can assume that α = f∂t, β = λ−f∂t, c ∈ K, u ∈ K[t], where f ∈ K[t]
and λ ∈ K×. Then we have the class of Poisson algebras A = K[t][x, y] = (K[t];α = f∂t, β = λ−1f∂t, c, u)
with Poisson bracket defined by the rule:

{t, y} = fy, {t, x} = λ−1fx and {y, x} = cyx + u. (4)

The first class of Poisson algebras A
The first class (Class I) of the Poisson algebrasA has two main subclasses: Class I.1 and Class I.2. The results
were indicated in these six Poisson algebras A2,A3,A6,A7,A9 and A10. Also, we presented some of their
Poisson spectrum in diagrams, see diagram 1.

Diagram 1: The 'Poisson Algebras I' poster

The first part of the second class (Class II) of Poisson algebras A is presented in this poster and the next
diagram shows the second class structure.
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Diagram 2: Structure of the second class of Poisson algebras A
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λ
)f∂t = 0 and u 6= 0

Class II.1:
If f = 0, i.e. α = β = 0 and u ∈ K[t]\{0} then we have the Poisson algebra A11 = (K[t]; 0, 0, c, u) with
Poisson bracket

{t, y} = 0, {t, x} = 0 and {y, x} = cyx + u. (5)

There are four subclasses.

Class II.1a:
If c = 0 and u ∈ K× then we have the Poisson algebra A12 = (K[t]; 0, 0, 0, u) with Poisson bracket

{t, y} = 0, {t, x} = 0 and {y, x} = u. (6)

The Poisson spectrum of A12 is {p⊗K[x, y] | p ∈ Spec(K[t])}.
Class II.1b:
If c = 0, u ∈ K[t]\K and Ru = {λ1, . . . , λs} is the set of distinct roots of u then A13 = (K[t]; 0, 0, 0, u) is a
Poisson algebra with Poisson bracket (6). The Poisson spectrum of A13 is in the below diagram, 3.
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where λi ∈ Ru, ν ∈ K\Ru,

µ, ω ∈ K× and h ∈ IrrmK[x, y]

Diagram 3: The containment information between Poisson prime ideals of A13

Class II.1c:
If c and u in K×, i.e. Ru = ∅ then we have the Poisson algebra A14 = (K[t]; 0, 0, c, u) with Poisson bracket

{t, y} = 0, {t, x} = 0 and {y, x} = cyx + u := ρ. (7)

The Poisson spectrum of A14 is in the below diagram, 4.
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〈t− ν,
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〈t− ν〉 〈ρ〉

0
where ν ∈ K,
c, u, µ ∈ K×

Diagram 4: The containment information between Poisson prime ideals of A14

.
Class II.1d:
If c ∈ K×, u ∈ K[t]\K and Ru = {λ1, . . . , λs} is the set of distinct roots of u then A15 = (K[t]; 0, 0, c, u) is
a Poisson algebra with Poisson bracket

{t, y} = 0, {t, x} = 0 and {y, x} = ρ. (8)

It follows that the element ρ = cyx + u is an irreducible polynomial in A15. The Poisson spectrum of A15 is
in the below diagram, 5
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where ρ = cyx+ u,

p ∈ Spec(A15), ρ ∈ p, ht(p) = 2,

ω ∈ K\Ru, and λi ∈ Ru

Diagram 5: The containment information between Poisson prime ideals of A15

5. Conclusion / Future research
A classification of Poisson prime ideals of Poisson algebras A was obtained in 12 classes out of 26. We will
complete the classification. Then we aim to classify some simple finite dimensional Poisson modules over A.
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